MEASURE and INTEGRATION Problems with Solutions

Anh Quang Le, Ph.D.

October 8, 2013

NOTATIONS

 $\mathcal{A}(X)$: The σ -algebra of subsets of X.

 $(X, \mathcal{A}(X), \mu)$: The measure space on X.

 $\mathcal{B}(X)$: The σ -algebra of Borel sets in a topological space X.

 \mathcal{M}_L : The σ -algebra of Lebesgue measurable sets in \mathbb{R} .

 $(\mathbb{R}, \mathcal{M}_L, \mu_L)$: The Lebesgue measure space on \mathbb{R} .

 μ_L : The Lebesgue measure on \mathbb{R} .

 μ_L^* : The Lebesgue outer measure on \mathbb{R} .

 $\mathbf{1}_E$ or χ_E : The characteristic function of the set E.

Contents

Contents		1
1	Measure on a σ -Algebra of Sets	5
2	Lebesgue Measure on $\mathbb R$	21
3	Measurable Functions	33
4	Convergence a.e. and Convergence in Measure	45
5	Integration of Bounded Functions on Sets of Finite Measure	53
6	Integration of Nonnegative Functions	63
7	Integration of Measurable Functions	75
8	Signed Measures and Radon-Nikodym Theorem	97
9	Differentiation and Integration	109
10	L^p Spaces	121
11	Integration on Product Measure Space	141
12	Some More Real Analysis Problems	151

4 CONTENTS

Chapter 1

Measure on a σ -Algebra of Sets

1. Limits of sequences of sets

Definition 1 Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of subsets of a set X.

- (a) We say that (A_n) is increasing if $A_n \subset A_{n+1}$ for all $n \in \mathbb{N}$, and decreasing if $A_n \supset A_{n+1}$ for all $n \in \mathbb{N}$.
- (b) For an increasing sequence (A_n) , we define

$$\lim_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} A_n.$$

For a decreasing sequence (A_n) , we define

$$\lim_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} A_n.$$

Definition 2 For any sequence (A_n) of subsets of a set X, we define

$$\liminf_{n \to \infty} A_n := \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k$$

$$\limsup_{n \to \infty} A_n := \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k.$$

Proposition 1 Let (A_n) be a sequence of subsets of a set X. Then

- (i) $\liminf_{n\to\infty} A_n = \{x \in X : x \in A_n \text{ for all but finitely many } n \in \mathbb{N}\}.$
- (ii) $\limsup_{n \to \infty} A_n = \{x \in X : x \in A_n \text{ for infinitely many } n \in \mathbb{N}\}.$
- $(iii) \quad \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n.$

2. σ -algebra of sets

www.MathVn.com⁵- Math Vietnam

Definition 3 $(\sigma$ -algebra)

Let X be an arbitrary set. A collection A of subsets of X is called an algebra if it satisfies the following conditions:

- 1. $X \in \mathcal{A}$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- 3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$. An algebra \mathcal{A} of a set X is called a σ -algebra if it satisfies the additional condition:
- 4. $A_n \in \mathcal{A}, \ \forall n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in n \in \mathbb{N}.$

Definition 4 (Borel σ -algebra)

Let (X, \mathcal{O}) be a topological space. We call the Borel σ -algebra $\mathcal{B}(X)$ the smallest σ -algebra of X containing \mathcal{O} .

It is evident that open sets and closed sets in X are Borel sets.

3. Measure on a σ -algebra

Definition 5 (Measure)

Let A be a σ -algebra of subsets of X. A set function μ defined on A is called a measure if it satisfies the following conditions:

- 1. $\mu(E) \in [0, \infty]$ for every $E \in \mathcal{A}$.
- 2. $\mu(\emptyset) = 0$.
- 3. $(E_n)_{n\in\mathbb{N}}\subset\mathcal{A}$, $disjoint\Rightarrow \mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mu(E_n)$.

Notice that if $E \in \mathcal{A}$ such that $\mu(E) = 0$, then E is called a *null set*. If any subset E_0 of a null set E is also a null set, then the measure space (X, \mathcal{A}, μ) is called *complete*.

Proposition 2 (Properties of a measure)

A measure μ on a σ -algebra $\mathcal A$ of subsets of X has the following properties:

- (1) Finite additivity: $(E_1, E_2, ..., E_n) \subset \mathcal{A}$, disjoint $\Longrightarrow \mu(\bigcup_{k=1}^n E_k) = \sum_{k=1}^n \mu(E_k)$.
- (2) Monotonicity: $E_1, E_2 \in \mathcal{A}, E_1 \subset E_2 \Longrightarrow \mu(E_1) \leq m(E_2).$
- (3) $E_1, E_2 \in \mathcal{A}, E_1 \subset E_2, \mu(E_1) < \infty \Longrightarrow \mu(E_2 \setminus E_1) = \mu(E_2) \mu(E_1).$
- (4) Countable subadditivity: $(E_n) \subset \mathcal{A} \Longrightarrow \mu\left(\bigcup_{n \in \mathbb{N}} E_n\right) \leq \sum_{n \in \mathbb{N}} \mu(E_n)$.

Definition 6 (Finite, σ -finite measure)

Let (X, \mathcal{A}, μ) be a measure space.

- 1. μ is called finite if $\mu(X) < \infty$.
- 2. μ is called σ -finite if there exists a sequence (E_n) of subsets of X such that

$$X = \bigcup_{n \in \mathbb{N}} E_n \quad and \quad \mu(E_n) < \infty, \ \forall n \in \mathbb{N}.$$

4. Outer measures

Definition 7 (Outer measure)

Let X be a set. A set function μ^* defined on the σ -algebra $\mathcal{P}(X)$ of all subsets of X is called an outer measure on X if it satisfies the following conditions:

- (i) $\mu^*(E) \in [0, \infty]$ for every $E \in \mathcal{P}(X)$.
- (ii) $\mu^*(\emptyset) = 0$.
- (iii) $E, F \in \mathfrak{P}(X), E \subset F \Rightarrow \mu^*(E) \leq \mu^*(F).$
- (iv) countable subadditivity:

$$(E_n)_{n\in\mathbb{N}}\subset\mathcal{P}(X),\ \mu^*\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq\sum_{n\in\mathbb{N}}\mu^*(E_n).$$

Definition 8 (Caratheodory condition)

We say that $E \in \mathcal{P}(X)$ is μ^* -measurable if it satisfies the Caratheodory condition:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$
 for every $A \in \mathcal{P}(X)$.

We write $\mathcal{M}(\mu^*)$ for the collection of all μ^* -measurable $E \in \mathcal{P}(X)$. Then $\mathcal{M}(\mu^*)$ is a σ -algebra.

Proposition 3 (Properties of μ^*)

- (a) If $E_1, E_2 \in \mathcal{M}(\mu^*)$, then $E_1 \cup E_2 \in \mathcal{M}(\mu^*)$.
- (b) μ^* is additive on $\mathcal{M}(\mu^*)$, that is,

$$E_1, E_2 \in \mathcal{M}(\mu^*), E_1 \cap E_2 = \varnothing \Longrightarrow \mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2).$$

* * **

Let A be a collection of subsets of a set X with the following properties:

- 1. $X \in \mathcal{A}$.
- 2. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$.

Show that A is an algebra.

Solution

- (i) $X \in \mathcal{A}$.
- (ii) $A \in \mathcal{A} \Rightarrow A^c = X \setminus A \in \mathcal{A}$ (by 2).
- (iii) $A, B \in \mathcal{A} \Rightarrow A \cap B = A \setminus B^c \in \mathcal{A}$ since $B^c \in \mathcal{A}$ (by (ii)). Since $A^c, B^c \in \mathcal{A}$, $(A \cup B)^c = A^c \cap B^c \in \mathcal{A}$. Thus, $A \cup B \in \mathcal{A}$.

Problem 2

- (a) Show that if $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of algebras of subsets of a set X, then $\bigcup_{n\in\mathbb{N}} A_n$ is an algebra of subsets of X.
- (b) Show by example that even if A_n in (a) is a σ -algebra for every $n \in \mathbb{N}$, the union still may not be a σ -algebra.

Solution

- (a) Let $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$. We show that \mathcal{A} is an algebra.
 - (i) Since $X \in \mathcal{A}_n$, $\forall n \in \mathbb{N}$, so $X \in \mathcal{A}$.
 - (ii) Let $A \in \mathcal{A}$. Then $A \in \mathcal{A}_n$ for some n. And so $A^c \in \mathcal{A}_n$ (since \mathcal{A}_n is an algebra). Thus, $A^c \in \mathcal{A}$.
- (iii) Suppose $A, B \in \mathcal{A}$. We shall show $A \cup B \in \mathcal{A}$. Since $\{\mathcal{A}_n\}$ is increasing, i.e., $\mathcal{A}_1 \subset \mathcal{A}_2 \subset ...$ and $A, B \in \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$, there is some $n_0 \in \mathbb{N}$ such that $A, B \in \mathcal{A}_0$. Thus, $A \cup B \in \mathcal{A}_0$. Hence, $A \cup B \in \mathcal{A}$.
- (b) Let $X = \mathbb{N}$, $\mathcal{A}_n =$ the family of all subsets of $\{1, 2, ..., n\}$ and their complements. Clearly, \mathcal{A}_n is a σ -algebra and $\mathcal{A}_1 \subset \mathcal{A}_2 \subset ...$ However, $\bigcup_{n \in \mathbb{N}} \mathcal{A}_n$ is the family of all finite and co-finite subsets of \mathbb{N} , which is not a σ -algebra.

Let X be an arbitrary infinite set. We say that a subset A of X is co-finite if its complement A^c is a finite subset of X. Let A consists of all the finite and the co-finite subsets of a set X.

- (a) Show that A is an algebra of subsets of X.
- (b) Show that A is a σ -algebra if and only if X is a finite set.

Solution

(a)

- (i) $X \in \mathcal{A}$ since X is co-finite.
- (ii) Let $A \in \mathcal{A}$. If A is finite then A^c is co-finite, so $A^c \in \mathcal{A}$. If A co-finite then A^c is finite, so $A^c \in \mathcal{A}$. In both cases,

$$A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$$
.

(iii) Let $A, B \in \mathcal{A}$. We shall show $A \cup B \in \mathcal{A}$. If A and B are finite, then $A \cup B$ is finite, so $A \cup B \in \mathcal{A}$. Otherwise, assume that A is co-finite, then $A \cup B$ is co-finite, so $A \cup B \in \mathcal{A}$. In both cases,

$$A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}.$$

(b) If X is finite then $\mathcal{A} = \mathcal{P}(X)$, which is a σ -algebra.

To show the reserve, i.e., if \mathcal{A} is a σ -algebra then X is finite, we assume that X is infinite. So we can find an infinite sequence $(a_1, a_2, ...)$ of distinct elements of X such that $X \setminus \{a_1, a_2, ...\}$ is infinite. Let $A_n = \{a_n\}$. Then $A_n \in \mathcal{A}$ for any $n \in \mathbb{N}$, while $\bigcup_{n \in \mathbb{N}} \mathcal{A}_n$ is neither finite nor co-finite. So $\bigcup_{n \in \mathbb{N}} A_n \notin \mathcal{A}$. Thus, \mathcal{A} is not a σ -algebra: a contradiction!

Note:

For an arbitrary collection \mathcal{C} of subsets of a set X, we write $\sigma(\mathcal{C})$ for the smallest σ -algebra of subsets of X containing \mathcal{C} and call it the σ -algebra generated by \mathcal{C} .

Problem 4

Let C be an arbitrary collection of subsets of a set X. Show that for a given $A \in \sigma(C)$, there exists a countable sub-collection C_A of C depending on A such that $A \in \sigma(C_A)$. (We say that every member of $\sigma(C)$ is countable generated).

Solution

Denote by \mathcal{B} the family of all subsets A of X for which there exists a countable sub-collection \mathcal{C}_A of \mathcal{C} such that $A \in \sigma(\mathcal{C}_A)$. We claim that \mathcal{B} is a σ -algebra and that $\mathcal{C} \subset \mathcal{B}$.

The second claim is clear, since $A \in \sigma(\{A\})$ for any $A \in \mathcal{C}$. To prove the first one, we have to verify that \mathcal{B} satisfies the definition of a σ -algebra.

- (i) Clearly, $X \in \mathcal{B}$.
- (ii) If $A \in \mathcal{B}$ then $A \in \sigma(\mathcal{C}_A)$ for some countable family $\mathcal{C}_A \subset \sigma(\mathcal{C})$. Then $A^c \in \sigma(\mathcal{C}_A)$, so $A^c \in \mathcal{B}$.
- (iii) Suppose $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{B}$. Then $A_n\in\sigma(\mathcal{C}_{A_n})$ for some countable family $\mathcal{C}_{A_n}\subset\mathcal{C}$. Let $\mathcal{E}=\bigcup_{n\in\mathbb{N}}\mathcal{C}_{A_n}$ then \mathcal{E} is countable and $\mathcal{E}\subset\mathcal{C}$ and $A_n\in\sigma(\mathcal{E})$ for all $n\in\mathbb{N}$. By definition of σ -algebra, $\bigcup_{n\in\mathbb{N}}A_n\in\sigma(\mathcal{E})$, and so $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{B}$.

Thus, \mathcal{B} is a σ -algebra of subsets of X and $\mathcal{E} \subset \mathcal{B}$. Hence,

$$\sigma(\mathcal{E}) \subset \mathcal{B}$$
.

By definition of \mathcal{B} , this implies that for every $A \in \sigma(\mathcal{C})$ there exists a countable $\mathcal{E} \subset \mathcal{C}$ such that $A \in \sigma(\mathcal{E})$.

Problem 5

Let γ a set function defined on a σ -algebra \mathcal{A} of subsets of X. Show that it γ is additive and countably subadditive on \mathcal{A} , then it is countably additive on \mathcal{A} .

Solution

We first show that the additivity of γ implies its monotonicity. Indeed, let $A, B \in \mathcal{A}$ with $A \subset B$. Then

$$B = A \cup (B \setminus A)$$
 and $A \cap (B \setminus A) = \emptyset$.

Since γ is additive, we get

$$\gamma(B) = \gamma(A) + \gamma(B \setminus A) \ge \gamma(A).$$

Now let (E_n) be a disjoint sequence in \mathcal{A} . For every $N \in \mathbb{N}$, by the monotonicity and the additivity of γ , we have

$$\gamma\left(\bigcup_{n\in\mathbb{N}}E_n\right)\geq\gamma\left(\bigcup_{n=1}^NE_n\right)=\sum_{n=1}^N\gamma(E_n).$$

www.MathVn.com - Math Vietnam

Since this holds for every $N \in \mathbb{N}$, so we have

(i)
$$\gamma\left(\bigcup_{n\in\mathbb{N}}E_n\right)\geq\sum_{n\in\mathbb{N}}\gamma(E_n).$$

On the other hand, by the countable subadditivity of γ , we have

(ii)
$$\gamma\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq \sum_{n\in\mathbb{N}}\gamma(E_n).$$

From (i) and (ii), it follows that

$$\gamma\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\gamma(E_n).$$

This proves the countable additivity of γ .

Problem 6

Let X be an infinite set and A be the algebra consisting of the finite and co-finite subsets of X (cf. Prob.3). Define a set function μ on A by setting for every $A \in A$:

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is finite} \\ 1 & \text{if } A \text{ is co-finite.} \end{cases}$$

- (a) Show that μ is additive.
- (b) Show that when X is countably infinite, μ is not additive.
- (c) Show that when X is countably infinite, then X is the limit of an increasing sequence $\{A_n : n \in \mathbb{N}\}$ in \mathcal{A} with $\mu(A_n) = 0$ for every $n \in \mathbb{N}$, but $\mu(X) = 1$.
- (d) Show that when X is uncountably, the μ is countably additive.

Solution

(a) Suppose $A, B \in \mathcal{A}$ and $A \cap B = \emptyset$ (i.e., $A \subset B^c$ and $B \subset A^c$).

If A is co-finite then B is finite (since $B \subset A^c$). So $A \cup B$ is co-finite. We have $\mu(A \cup B) = 1$, $\mu(A) = 1$ and $\mu(B) = 0$. Hence, $\mu(A \cup B) = \mu(A) + \mu(B)$.

If B is co-finite then A is finite (since $A \subset B^c$). So $A \cup B$ is co-finite, and we have the same result. Thus, μ is additive.

(b) Suppose X is countably infinite. We can then put X under this form: $X = \{x_1, x_2, ...\}, x_i \neq x_j \text{ if } i \neq j.$ Let $A_n = \{x_n\}.$ Then the family $\{A_n\}_{n \in \mathbb{N}}$ is disjoint and $\mu(A_n) = 0$ for every $n \in \mathbb{N}$. So $\sum_{n \in \mathbb{N}} \mu(A_n) = 0$. On the other hand, we have

12

 $\bigcup_{n\in\mathbb{N}} A_n = X$, and $\mu(X) = 1$. Thus,

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\neq\sum_{n\in\mathbb{N}}\mu(A_n).$$

Hence, μ is not additive.

(c) Suppose X is countably infinite, and $X = \{x_1, x_2, ...\}$, $x_i \neq x_j$ if $i \neq j$ as in (b). Let $B_n = \{x_1, x_2, ..., x_n\}$. Then $\mu(B_n) = 0$ for every $n \in \mathbb{N}$, and the sequence $(B_n)_{n \in \mathbb{N}}$ is increasing. Moreover,

$$\lim_{n \to \infty} B_n = \bigcup_{n \in \mathbb{N}} B_n = X \text{ and } \mu(X) = 1.$$

(d) Suppose X is uncountably. Consider the family of disjoint sets $\{C_n\}_{n\in\mathbb{N}}$ in \mathcal{A} . Suppose $C=\bigcup_{n\in\mathbb{N}}C_n\in\mathcal{A}$. We first claim: At most one of the C_n 's can be co-finite. Indeed, assume there are two elements C_n and C_m of the family are co-finite. Since $C_m\subset C_n^c$, so C_m must be finite: a contradiction.

Suppose C_{n_0} is the co-finite set. Then since $C \supset C_{n_0}$, C is also co-finite. Therefore,

$$\mu(C) = \mu\left(\bigcup_{n\in\mathbb{N}} C_n\right) = 1.$$

On the other hand, we have

$$\mu(C_{n_0}) = 1$$
 and $\mu(C_n) = 0$ for $n \neq n_0$.

Thus,

$$\mu\left(\bigcup_{n\in\mathbb{N}}C_n\right)=\sum_{n\in\mathbb{N}}\mu(C_n).$$

If all C_n are finite then $\bigcup_{n\in\mathbb{N}} C_n$ is finite, so we have

$$0 = \mu\left(\bigcup_{n \in \mathbb{N}} C_n\right) = \sum_{n \in \mathbb{N}} \mu(C_n). \quad \blacksquare$$

Problem 7

Let (X, \mathcal{A}, μ) be a measure space. Show that for any $A, B \in \mathcal{A}$, we have the equality:

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Solution

If $\mu(A) = \infty$ or $\mu(B) = \infty$, then the equality is clear. Suppose $\mu(A)$ and $\mu(B)$ are finite. We have

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A),$$

$$A = (A \setminus B) \cup (A \cap B)$$

$$B = (B \setminus A) \cup (A \cap B).$$

Notice that in these decompositions, sets are disjoint. So we have

(1.2)
$$\mu(A) + \mu(B) = 2\mu(A \cap B) + \mu(A \setminus B) + \mu(B \setminus A).$$

From (1.1) and (1.2) we obtain

$$\mu(A \cup B) - \mu(A) - \mu(B) = -\mu(A \cap B).$$

The equality is proved.

Problem 8

The symmetry difference of $A, B \in \mathcal{P}(X)$ is defined by

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

(a) Prove that

$$\forall A, B, C \in \mathcal{P}(X), \ A \triangle B \subset (A \triangle C) \cup (C \triangle B).$$

(b) Let (X, \mathcal{A}, μ) be a measure space. Show that

$$\forall A, B, C \in \mathcal{A}, \ \mu(A \triangle B) \le \mu(A \triangle C) + \mu(C \triangle B).$$

Solution

(a) Let $x \in A \triangle B$. Suppose $x \in A \setminus B$. If $x \in C$ then $x \in C \setminus B$ so $x \in C \triangle B$. If $x \notin C$, then $x \in A \setminus C$, so $x \in A \triangle C$. In both cases, we have

$$x \in A \bigtriangleup B \Rightarrow x \in (A \bigtriangleup C) \cup (C \bigtriangleup B).$$

The case $x \in B \setminus A$ is dealt with the same way.

(b) Use subadditivity of μ and (a).

Let X be an infinite set and μ the counting measure on the σ -algebra $\mathcal{A} = \mathcal{P}(X)$. Show that there exists a decreasing sequence $(E_n)_{n\in\mathbb{N}}$ in \mathcal{A} such that

$$\lim_{n\to\infty} E_n = \varnothing \quad with \quad \lim_{n\to\infty} \mu(E_n) \neq 0.$$

Solution

Since X is a infinite set, we can find an countably infinite set $\{x_1, x_2, ...\} \subset X$ with $x_i \neq x_j$ if $i \neq j$. Let $E_n = \{x_n, x_{n+1}, ...\}$. Then $(E_n)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathcal{A} with

$$\lim_{n\to\infty} E_n = \emptyset \text{ and } \lim_{n\to\infty} \mu(E_n) = 0. \quad \blacksquare$$

Problem 10 (Monotone sequence of measurable sets)

Let (X, \mathcal{A}, μ) be a measure space, and (E_n) be a monotone sequence in \mathcal{A} . (a) If (E_n) is increasing, show that

$$\lim_{n\to\infty}\mu(E_n)=\mu\bigl(\lim_{n\to\infty}E_n\bigr).$$

(b) If (E_n) is decreasing, show that

$$\lim_{n\to\infty}\mu(E_n)=\mu\bigl(\lim_{n\to\infty}E_n\bigr),$$

provided that there is a set $A \in \mathcal{A}$ satisfying $\mu(A) < \infty$ and $A \supset E_1$.

Solution

Recall that if (E_n) is increasing then $\lim_{n\to\infty} E_n = \bigcup_{n\in\mathbb{N}} E_n \in \mathcal{A}$, and if (E_n) is decreasing then $\lim_{n\to\infty} E_n = \bigcap_{n\in\mathbb{N}} E_n \in \mathcal{A}$. Note also that if (E_n) is a monotone sequence in \mathcal{A} , then $(\mu(E_n))$ is a monotone sequence in $[0,\infty]$ by the monotonicity of μ , so that $\lim_{n\to\infty} \mu(E_n)$ exists in $[0,\infty]$.

(a) Suppose (E_n) is increasing. Then the sequence $(\mu(E_n))$ is also increasing. Consider the first case where $\mu(E_{n_0}) = \infty$ for some E_{n_0} . In this case we have $\lim_{n\to\infty} \mu(E_n) = \infty$. On the other hand,

$$E_{n_0} \subset \bigcup_{n \in \mathbb{N}} E_n = \lim_{n \to \infty} E_n \Longrightarrow \mu(\lim_{n \to \infty} E_n) \ge \mu(E_{n_0}) = \infty.$$

Thus

$$\mu(\lim_{n\to\infty} E_n) = \infty = \lim_{n\to\infty} \mu(E_n).$$

Consider the next case where $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$. Let $E_0 = \emptyset$, then consider the disjoint sequence (F_n) in \mathcal{A} defined by $F_n = E_n \setminus E_{n-1}$ for all $n \in \mathbb{N}$. It is evident that

$$\bigcup_{n\in\mathbb{N}} E_n = \bigcup_{n\in\mathbb{N}} F_n.$$

Then we have

$$\mu\left(\lim_{n\to\infty} E_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}} E_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}} F_n\right)$$

$$= \sum_{n\in\mathbb{N}} \mu(F_n) = \sum_{n\in\mathbb{N}} \mu(E_n \setminus E_{n-1})$$

$$= \sum_{n\in\mathbb{N}} \left[\mu(E_n) - \mu(E_{n-1})\right]$$

$$= \lim_{n\to\infty} \sum_{k=1}^n \left[\mu(E_k) - \mu(E_{k-1})\right]$$

$$= \lim_{n\to\infty} \left[\mu(E_n) - \mu(E_0)\right] = \lim_{n\to\infty} \mu(E_n). \quad \Box$$

(b) Suppose (E_n) is decreasing and assume the existence of a containing set A with finite measure. Define a disjoint sequence (G_n) in \mathcal{A} by setting $G_n = E_n \setminus E_{n+1}$ for all $n \in \mathbb{N}$. We claim that

(1)
$$E_1 \setminus \bigcap_{n \in \mathbb{N}} E_n = \bigcup_{n \in \mathbb{N}} G_n.$$

To show this, let $x \in E_1 \setminus \bigcap_{n \in \mathbb{N}} E_n$. Then $x \in E_1$ and $x \notin \bigcap_{n \in \mathbb{N}} E_n$. Since the sequence (E_n) is decreasing, there exists the first set E_{n_0+1} in the sequence not containing x. Then

$$x \in E_{n_0} \setminus E_{n_0+1} = G_{n_0} \Longrightarrow x \in \bigcup_{n \in \mathbb{N}} G_n.$$

Conversely, if $x \in \bigcup_{n \in \mathbb{N}} G_n$, then $x \in G_{n_0} = E_{n_0} \setminus E_{n_0+1}$ for some $n_0 \in \mathbb{N}$. Now $x \in E_{n_0} \subset E_1$. Since $x \notin E_{n_0+1}$, we have $x \notin \bigcap_{n \in \mathbb{N}} E_n$. Thus $x \in E_1 \setminus \bigcap_{n \in \mathbb{N}} E_n$. Hence (1) is proved.

Now by (1) we have

(2)
$$\mu\left(E_1\setminus\bigcap_{n\in\mathbb{N}}E_n\right)=\mu\left(\bigcup_{n\in\mathbb{N}}G_n\right).$$

www.MathVn.com - Math Vietnam

CHAPTER 1. MEASURE ON A σ -ALGEBRA OF SETS

16

Since $\mu\left(\bigcap_{n\in\mathbb{N}} E_n\right) \leq \mu(E_1) \leq \mu(A) < \infty$, we have

(3)
$$\mu\left(E_1 \setminus \bigcap_{n \in \mathbb{N}} E_n\right) = \mu(E_1) - \mu\left(\bigcap_{n \in \mathbb{N}} E_n\right)$$

= $\mu(E_1) - \mu(\lim_{n \to \infty} E_n)$.

By the countable additivity of μ , we have

$$(4) \quad \mu\left(\bigcup_{n\in\mathbb{N}}G_{n}\right) = \sum_{n\in\mathbb{N}}\mu(G_{n}) = \sum_{n\in\mathbb{N}}\mu(E_{n}\setminus E_{n+1})$$

$$= \sum_{n\in\mathbb{N}}\left[\mu(E_{n}) - \mu(E_{n+1})\right]$$

$$= \lim_{n\to\infty}\sum_{k=1}^{n}\left[\mu(E_{k}) - \mu(E_{k+1})\right]$$

$$= \lim_{n\to\infty}\left[\mu(E_{1}) - \mu(E_{n+1})\right]$$

$$= \mu(E_{1}) - \lim_{n\to\infty}\mu(E_{n+1}).$$

Substituting (3) and (4) in (2), we have

$$\mu(E_1) - \mu(\lim_{n \to \infty} E_n) = \mu(E_1) - \lim_{n \to \infty} \mu(E_{n+1}).$$

Since $\mu(E_1) < \infty$, we have

$$\mu(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} \mu(E_n).$$

Problem 11 (Fatou's lemma for μ)

Let (X, \mathcal{A}, μ) be a measure space, and (E_n) be a sequence in \mathcal{A} .

(a) Show that

$$\mu\left(\liminf_{n\to\infty} E_n\right) \le \liminf_{n\to\infty} \mu(E_n).$$

(b) If there exists $A \in \mathcal{A}$ with $E_n \subset A$ and $\mu(A) < \infty$ for every $n \in \mathbb{N}$, then show that

$$\mu(\limsup_{n\to\infty} E_n) \ge \limsup_{n\to\infty} \mu(E_n).$$

Solution

(a) Recall that

$$\liminf_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} E_k = \lim_{n \to \infty} \bigcap_{k \ge n} E_k,$$

by the fact that $\left(\bigcap_{k\geq n} E_k\right)_{n\in\mathbb{N}}$ is an increasing sequence in \mathcal{A} . Then by Problem 9a we have

$$(*) \quad \mu\left(\liminf_{n\to\infty} E_n\right) = \lim_{n\to\infty} \mu\left(\bigcap_{k>n} E_k\right) = \liminf_{n\to\infty} \mu\left(\bigcap_{k>n} E_k\right),$$

since the limit of a sequence, if it exists, is equal to the limit inferior of the sequence. Since $\bigcap_{k\geq n} E_k \subset E_n$, we have $\mu\left(\bigcap_{k\geq n} E_k\right) \leq \mu(E_n)$ for every $n \in \mathbb{N}$. This implies that

$$\liminf_{n\to\infty} \mu\left(\bigcap_{k>n} E_k\right) \le \liminf_{n\to\infty} \mu(E_n).$$

Thus by (*) we obtain

$$\mu\left(\liminf_{n\to\infty} E_n\right) \le \liminf_{n\to\infty} \mu(E_n).$$

(b) Now

$$\limsup_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} E_k = \lim_{n \to \infty} \bigcup_{k \ge n} E_k,$$

by the fact that $\left(\bigcup_{k\geq n} E_k\right)_{n\in\mathbb{N}}$ is an decreasing sequence in \mathcal{A} . Since $E_n\subset A$ for all $n\in\mathbb{N}$, we have $\bigcup_{k\geq n} E_k\subset A$ for all $n\in\mathbb{N}$. Thus by Problem 9b we have

$$\mu\left(\limsup_{n\to\infty} E_n\right) = \mu\left(\lim_{n\to\infty} \bigcup_{k>n} E_k\right) = \lim_{n\to\infty} \mu\left(\bigcup_{k>n} E_k\right).$$

www.MathVn.com - Math Vietnam

CHAPTER 1. MEASURE ON A σ -ALGEBRA OF SETS

Now

$$\lim_{n \to \infty} \mu\left(\bigcup_{k > n} E_k\right) = \limsup_{n \to \infty} \mu\left(\bigcup_{k > n} E_k\right),\,$$

since the limit of a sequence, if it exists, is equal to the limit superior of the sequence. Then by $\bigcup_{k>n} E_k \supset E_n$ we have

$$\mu\left(\bigcup_{k\geq n} E_k\right) \geq \mu(E_n).$$

Thus

$$\limsup_{n\to\infty}\mu\left(\bigcup_{k\geq n}E_k\right)\geq \limsup_{n\to\infty}\mu(E_n).$$

It follows that

$$\mu(\limsup_{n\to\infty} E_n) \ge \limsup_{n\to\infty} \mu(E_n).$$

Problem 12

Let μ^* be an outer measure on a set X. Show that the following two conditions are equivalent:

- (i) μ^* is additive on $\mathcal{P}(X)$.
- (ii) Every element of $\mathcal{P}(X)$ is μ^* -measurable, that is, $\mathcal{M}(\mu^*) = \mathcal{P}(X)$.

Solution

• Suppose μ^* is additive on $\mathcal{P}(X)$. Let $E \in \mathcal{P}(X)$. Then for any $A \in \mathcal{P}(X)$,

$$A = (A \cap E) \cup (A \cap E^c) \quad \text{and} \quad (A \cap E) \cap (A \cap E^c) = \varnothing.$$

By the additivity of μ^* on $\mathcal{P}(X)$, we have

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c).$$

This show that E satisfies the Carathéodory condition. Hence $E \in \mathcal{M}(\mu^*)$. So $\mathcal{P}(X) \subset \mathcal{M}(\mu^*)$. But by definition, $\mathcal{M}(\mu^*) \subset \mathcal{P}(X)$. Thus

$$\mathcal{M}(\mu^*) = \mathcal{P}(X).$$

• Conversely, suppose $\mathcal{M}(\mu^*) = \mathcal{P}(X)$. Since μ^* is additive on $\mathcal{M}(\mu^*)$ by Proposition 3, so μ^* is additive on $\mathcal{P}(X)$.

18

Let μ^* be an outer measure on a set X.

- (a) Show that the restriction μ of μ^* on the σ -algebra $\mathcal{M}(\mu^*)$ is a measure on $\mathcal{M}(\mu^*)$.
- (b) Show that if μ^* is additive on $\mathcal{P}(X)$, then it is countably additive on $\mathcal{P}(X)$.

Solution

- (a) By definition, μ^* is countably subadditive on $\mathcal{P}(X)$. Its restriction μ on $\mathcal{M}(\mu^*)$ is countably subadditive on $\mathcal{M}(\mu^*)$. By Proposition 3b, μ^* is additive on $\mathcal{M}(\mu^*)$. Therefore, by Problem 5, μ^* is countably additive on $\mathcal{M}(\mu^*)$. Thus, μ^* is a measure on $\mathcal{M}(\mu^*)$. But μ is the restriction of μ^* on $\mathcal{M}(\mu^*)$, so we can say that μ is a measure on $\mathcal{M}(\mu^*)$.
- (b) If μ^* is additive on $\mathcal{P}(X)$, then by Problem 11, $\mathcal{M}(\mu^*) = \mathcal{P}(X)$. So μ^* is a measure on $\mathcal{P}(X)$ (Problem 5). In particular, μ^* is countably additive on $\mathcal{P}(X)$.

CHAPTER 1. MEASURE ON A σ -ALGEBRA OF SETS

20

Chapter 2

Lebesgue Measure on \mathbb{R}

1. Lebesgue outer measure on \mathbb{R}

Definition 9 (Outer measure)

Lebesgue outer measure on \mathbb{R} is a set function $\mu_L^*: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ defined by

$$\mu_L^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) : \ A \subset \bigcup_{k=1}^{\infty} I_k, \ I_k \ \text{is open interval in} \ \mathbb{R} \right\}.$$

Proposition 4 (Properties of μ_L^*)

- 1. $\mu_L^*(A) = 0$ if A is at most countable.
- 2. Monotonicity: $A \subset B \Rightarrow \mu_L^*(A) \leq \mu_L^*(B)$.
- 3. Translation invariant: $\mu_L^*(A+x) = \mu_L^*(A), \ \forall x \in \mathbb{R}.$
- 4. Countable subadditivity: $\mu_L^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu_L^* (A_n)$.
- 5. Null set: $\mu_L^*(A) = 0 \Rightarrow \mu_L^*(A \cup B) = \mu_L^*(B)$ and $\mu_L^*(B \setminus A) = \mu_L^*(B)$ for all $B \in \mathcal{P}(\mathbb{R})$.
- 6. For any interval $I \subset \mathbb{R}$, $\mu_L^*(I) = \ell(I)$.
- 7. Regularity:

$$\forall E \in \mathcal{P}(\mathbb{R}), \ \varepsilon > 0, \ \exists O \ open \ set \ in \ \mathbb{R}: \ O \supset E \ and \ \mu_L^*(E) \leq \mu_L^*(O) \leq \mu_L^*(E) + \varepsilon.$$

2. Measurable sets and Lebesgue measure on \mathbb{R}

Definition 10 (Carathéodory condition)

A set $E \subset \mathbb{R}$ is said to be Lebesgue measurable (or μ_L -measurable, or measurable) if, for all $A \subset \mathbb{R}$, we have

$$\mu_L^*(A) = \mu_L^*(A \cap E) + \mu_L^*(A \cap E^c).$$

www.MathVn.com²¹- Math Vietnam

22

Since μ_L^* is subadditive, the sufficient condition for Carathéodory condition is

$$\mu_L^*(A) \ge \mu_L^*(A \cap E) + \mu_L^*(A \cap E^c).$$

The family of all measurable sets is denoted by \mathcal{M}_L . We can see that \mathcal{M}_L is a σ -algebra. The restriction of μ_L^* on \mathcal{M}_L is denoted by μ_L and is called Lebesgue measure.

Proposition 5 (Properties of μ_L)

- 1. $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ is a complete measure space.
- 2. $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ is σ -finite measure space.
- 3. $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_L$, that is, every Borel set is measurable.
- 4. $\mu_L(O) > 0$ for every nonempty open set in \mathbb{R} .
- 5. $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ is translation invariant.
- 6. $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ is positively homogeneous, that is,

$$\mu_L(\alpha E) = |\alpha|\mu_L(E), \ \forall \alpha \in \mathbb{R}, \ E \in \mathcal{M}_L.$$

Note on F_{σ} and G_{δ} sets:

Let (X, \mathcal{T}) be a topological space.

- A subset E of X is called a F_{σ} -set if it is the union of countably many closed sets.
- A subset E of X is called a G_{δ} -set if it is the intersection of countably many open sets.
- If E is a G_{δ} -set then E^c is a F_{σ} -set and vice versa. Every G_{δ} -set is Borel set, so is every F_{σ} -set.

* * **

Problem 14

If E is a null set in $(\mathbb{R}, \mathcal{M}_L, \mu_L)$, prove that E^c is dense in \mathbb{R} .

Solution

For every open interval I in \mathbb{R} , $\mu_L(I) > 0$ (property of Lebesgue measure). If $\mu_L(E) = 0$, then by the monotonicity of μ_L , E cannot contain any open interval as a subset. This implies that

$$E^c \cap I = \emptyset$$

for any open interval I in \mathbb{R} . Thus E^c is dense in \mathbb{R} .

Prove that for every $E \subset \mathbb{R}$, there exists a G_{δ} -set $G \subset \mathbb{R}$ such that

$$G \supset E$$
 and $\mu_L^*(G) = \mu_L^*(E)$.

Solution

We use the regularity property of μ_L^* (Property 7). For $\varepsilon = \frac{1}{n}, \ n \in \mathbb{N}$, there exists an open set $O_n \subset \mathbb{R}$ such that

$$O_n \supset E$$
 and $\mu_L^*(E) \le \mu_L^*(O_n) \le \mu_L^*(E) + \frac{1}{n}$.

Let $G = \bigcap_{n \in \mathbb{N}} O_n$. Then G is a G_{δ} -set and $G \supset E$. Since $G \subset O_n$ for every $n \in \mathbb{N}$, we have

$$\mu_L^*(E) \le \mu_L^*(G) \le \mu_L^*(O_n) \le \mu_L^*(E) + \frac{1}{n}.$$

This holds for every $n \in \mathbb{N}$, so we have

$$\mu_L^*(E) \le \mu_L^*(G) \le \mu_L^*(E).$$

Therefore

$$\mu^*(G) = \mu^*(E). \qquad \blacksquare$$

Problem 16

Let $E \subset \mathbb{R}$. Prove that the following statements are equivalent:

- (i) E is (Lebesgue) measurable.
- (ii) For every $\varepsilon > 0$, there exists an open set $O \supset E$ with $\mu_L^*(O \setminus E) \leq \varepsilon$.
- (iii) There exists a G_{δ} -set $G \supset E$ with $\mu_L^*(G \setminus E) = 0$.

Solution

• $(i) \Rightarrow (ii)$ Suppose that E is measurable. Then

$$\forall \varepsilon > 0, \exists \text{ open set } O: \ O \supset E \ \text{ and } \ \mu_L^*(E) \leq \mu_L^*(O) \leq \mu_L^*(E) + \varepsilon. \ \ (1)$$

Since E is measurable, with O as a testing set in the Carathéodory condition satisfied by E, we have

$$\mu_L^*(O) = \mu_L^*(O \cap E) + \mu_L^*(O \cap E^c) = \mu_L^*(E) + \mu_L^*(O \setminus E).$$
 (2)

www.MathVn.com - Math Vietnam

If $\mu_L^*(E) < \infty$, then from (1) and (2) we get

$$\mu_L^*(O) \le \mu_L^*(E) + \varepsilon \Longrightarrow \mu_L^*(O) - \mu_L^*(E) = \mu_L^*(O \setminus E) \le \varepsilon.$$

If $\mu_L^*(E) = \infty$, let $E_n = E \cap (n-1, n]$ for $n \in \mathbb{Z}$. Then $(E_n)_{n \in \mathbb{Z}}$ is a disjoint sequence in \mathcal{M}_L with

$$\bigcup_{n\in\mathbb{Z}} E_n = E \text{ and } \mu_L(E_n) \le \mu_L((n-1,n]) = 1.$$

Now, for every $\varepsilon > 0$, there is an open set O_n such that

$$O_n \supset E_n \text{ and } \mu_L(O_n \setminus E_n) \le \frac{1}{3} \cdot \frac{\varepsilon}{2^{|n|}}.$$

Let $O = \bigcup_{n \in \mathbb{Z}} O_n$, then O is open and $O \supset E$, and

$$O \setminus E = \left(\bigcup_{n \in \mathbb{Z}} O_n\right) \setminus \left(\bigcup_{n \in \mathbb{Z}} E_n\right) = \left(\bigcup_{n \in \mathbb{Z}} O_n\right) \cap \left(\bigcup_{n \in \mathbb{Z}} E_n\right)^c$$

$$= \bigcup_{n \in \mathbb{Z}} \left[O_n \cap \left(\bigcup_{n \in \mathbb{Z}} E_n\right)^c\right] = \bigcup_{n \in \mathbb{Z}} \left[O_n \setminus \left(\bigcup_{n \in \mathbb{Z}} E_n\right)\right]$$

$$\subset \bigcup_{n \in \mathbb{Z}} (O_n \setminus E_n).$$

Then we have

$$\mu_L^*(O \setminus E) \leq \mu_L^* \left(\bigcup_{n \in \mathbb{Z}} (O_n \setminus E_n) \right) \leq \sum_{n \in \mathbb{Z}} \mu_L^*(O_n \setminus E)$$

$$\leq \sum_{n \in \mathbb{Z}} \frac{1}{3} \cdot \frac{\varepsilon}{2^{|n|}} = \frac{1}{3} \varepsilon + 2 \sum_{n \in \mathbb{N}} \frac{1}{3} \cdot \frac{\varepsilon}{2^n}$$

$$= \frac{1}{3} \varepsilon + \frac{2}{3} \varepsilon = \varepsilon.$$

This shows that (ii) satisfies.

• $(ii) \Rightarrow (iii)$ Assume that E satisfies (ii). Then for $\varepsilon = \frac{1}{n}$, $n \in \mathbb{N}$, there is an open set O_n such that

$$O_n \supset E_n \text{ and } \mu_L(O_n \setminus E_n) \le \frac{1}{n}, \ \forall n \in \mathbb{N}.$$

Let $G = \bigcap_{n \in \mathbb{N}} O_n$. Then G is a G_{δ} -set containing E. Now

$$G \subset O \Longrightarrow \mu_L^*(G \setminus E) \le \mu_L^*(O_n \setminus E) \le \frac{1}{n}, \ \forall n \in \mathbb{N}.$$

www.MathVn.com - Math Vietnam

Thus $\mu_L^*(G \setminus E) = 0$. This shows that E satisfies (iii).

• $(iii) \Rightarrow (i)$ Assume that E satisfies (iii). Then there exists a G_{δ} -set G such that

$$G \supset E$$
 and $\mu_L^*(G \setminus E) = 0$.

Now $\mu_L^*(G \setminus E) = 0$ implies that $G \setminus E$ is (Lebesgue) measurable. Since $E \subset G$, we can write $E = G \setminus (G \setminus E)$. Then the fact that G and $G \setminus E$ are (Lebesgue) measurable implies that E is (Lebesgue) measurable.

Problem 17(Similar problem)

Let $E \subset \mathbb{R}$. Prove that the following statements are equivalent:

- (i) E is (Lebesgue) measurable.
- (ii) For every $\varepsilon > 0$, there exists an closed set $C \subset E$ with $\mu_L^*(E \setminus C) \leq \varepsilon$.
- (iii) There exists a F_{σ} -set $F \subset E$ with $\mu_L^*(E \setminus F) = 0$.

Problem 18

Let \mathbb{Q} be the set of all rational numbers in \mathbb{R} . For any $\varepsilon > 0$, construct an open set $O \subset \mathbb{R}$ such that

$$O \supset \mathbb{Q}$$
 and $\mu_L^*(O) \le \varepsilon$.

Solution

Since \mathbb{Q} is countable, we can write $\mathbb{Q} = \{r_1, r_2, ...\}$. For any $\varepsilon > 0$, let

$$I_n = \left(r_n - \frac{\varepsilon}{2^{n+1}}, r_n + \frac{\varepsilon}{2^{n+1}}\right), \quad n \in \mathbb{N}.$$

Then I_n is open and $O = \bigcup_{n=1}^{\infty} I_n$ is also open. We have, for every $n \in \mathbb{N}$, $r_n \in I_n$. Therefore $O \supset \mathbb{Q}$.

Moreover,

$$\mu_L^*(O) = \mu_L^* \left(\bigcup_{n=1}^{\infty} I_n \right) \leq \sum_{n=1}^{\infty} \mu_L^*(I_n)$$

$$= \sum_{n=1}^{\infty} \frac{2\varepsilon}{2^{n+1}}$$

$$= \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^n} = \varepsilon. \quad \blacksquare$$

Let \mathbb{Q} be the set of all rational numbers in \mathbb{R} .

- (a) Show that \mathbb{Q} is a null set in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_L)$.
- (b) Show that \mathbb{Q} is a F_{σ} -set.
- (c) Show that there exists a G_{δ} -set G such that $G \supset \mathbb{Q}$ and $\mu_L(G) = 0$.
- (d) Show that the set of all irrational numbers in \mathbb{R} is a G_{δ} -set.

Solution

(a) Since \mathbb{Q} is countable, we can write $\mathbb{Q} = \{r_1, r_2, ...\}$. Each $\{r_n\}$, $n \in \mathbb{N}$ is closed, so $\{r_n\} \in \mathcal{B}_{\mathbb{R}}$. Since $\mathcal{B}_{\mathbb{R}}$ is a σ -algebra,

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\} \in \mathcal{B}_{\mathbb{R}}.$$

Since $\mu_L(\{r_n\}) = 0$, we have

$$\mu_L(\mathbb{Q}) = \sum_{n=1}^{\infty} \mu_L(\{r_n\}) = 0.$$

Thus, \mathbb{Q} is a null set in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_L)$.

- (b) Since $\{r_n\}$ is closed and $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$, \mathbb{Q} is a F_{σ} -set.
- (c) By (a), $\mu_L(\mathbb{Q}) = 0$. This implies that, for every $n \in \mathbb{N}$, there exists an open set G_n such that

$$G_n \supset \mathbb{Q}$$
 and $\mu_L(G_n) < \frac{1}{n}$.

If $G = \bigcap_{n=1}^{\infty} G_n$ then G is a G_{δ} -set and $G \supset \mathbb{Q}$. Furthermore,

$$\mu_L(G) \le \mu_L(G_n) < \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$

This implies that $\mu_L(G) = 0$.

(d) By (b), \mathbb{Q} is a F_{σ} -set, so $\mathbb{R} \setminus \mathbb{Q}$, the set of all irrational numbers in \mathbb{R} , is a G_{δ} -set.

Problem 20

Let $E \in \mathcal{M}_L$ with $\mu_L(E) > 0$. Prove that for every $\alpha \in (0,1)$, there exists a finite open interval I such that

$$\alpha \mu_L(I) \le \mu_L(E \cap I) \le \mu_L(I).$$

Solution

• Consider first the case where $0 < \mu_L(E) < \infty$. For any $\alpha \in (0,1)$, set $\frac{1}{\alpha} = 1 + a$. Since a > 0, $0 < \varepsilon = a\mu_L(E) < \infty$. By the regularity property of μ_L^* (Property 7), there exists an open set $O \supset E$ such that¹

$$\mu_L(O) \le \mu_L(E) + a\mu_L(E) = (1+a)\mu_L(E) = \frac{1}{\alpha}\mu_L(E) < \infty.$$
 (i)

Now since O is an open set in \mathbb{R} , it is union of a disjoint sequence (I_n) of open intervals in \mathbb{R} :

$$O = \bigcup_{n \in \mathbb{N}} I_n \Longrightarrow \mu_L(O) = \sum_{n \in \mathbb{N}} \mu_L(I_n). \quad (ii)$$

Since $E \subset O$, we have

$$\mu_L(E) = \mu_L(E \cap O) = \mu_L \left(E \cap \bigcup_{n \in \mathbb{N}} I_n \right) = \sum_{n \in \mathbb{N}} \mu_L(E \cap I_n). \quad (iii)$$

From (i), (ii) and (iii) it follows that

$$\sum_{n\in\mathbb{N}} \mu_L(I_n) \le \frac{1}{\alpha} \sum_{n\in\mathbb{N}} \mu_L(E \cap I_n).$$

Note that all terms in this inequality are positive, so that there exists at least one $n_0 \in \mathbb{N}$ such that

$$\mu_L(I_{n_0}) \le \frac{1}{\alpha} \mu_L(E \cap I_{n_0}).$$

Since $\mu_L(O)$ is finite, all intervals I_n are finite intervals in \mathbb{R} . Let $I := I_{n_0}$, then I is a finite open interval satisfying conditions:

$$\alpha \mu_L(I) \le \mu_L(E \cap I) \le \mu_L(I).$$

• Now consider that case $\mu_L(E) = \infty$. By the σ -finiteness of the Lebesgue measure space, there exists a measurable subset E_0 of E such that $0 < \mu_L(E_0) < \infty$. Then using the first part of the solution, we obtain

$$\alpha \mu_L(I) \le \mu_L(E_0 \cap I) \le \mu_L(E \cap I) \le \mu_L(I).$$

¹Recall that for (Lebesgue) measurable set A, $\mu_L^*(A) = \mu_L(A)$.

Let f be a real-valued function on (a,b) such that f' exists and satisfies

$$|f'(x)| \le M$$
 for all $x \in (a,b)$ and for some $M \ge 0$.

Show that for every $E \subset (a,b)$ we have

$$\mu_L^*(f(E)) \le M\mu_L^*(E).$$

Solution

If M = 0 then f'(x) = 0, $\forall x \in (a, b)$. Hence, $f(x) = y_0$, $\forall x \in (a, b)$. Thus, for any $E \subset (a, b)$ we have

$$\mu_L^*(f(E)) = 0.$$

The inequality holds. Suppose M > 0. For all $x, y \in (a, b)$, by the Mean Value Theorem, we have

$$|f(x) - f(y)| = |x - y||f'(c)|$$
, for some $c \in (a, b)$
 $\leq M|x - y|$. (*)

By definition of the outer measure, for any $E \subset (a, b)$ we have

$$\mu_L^*(E) = \inf \sum_{n=1}^{\infty} (b_n - a_n),$$

where $\{I_n = (a_n, b_n), n \in \mathbb{N}\}\$ is a covering class of E. By (*) we have

$$\sum_{n=1}^{\infty} |f(b_n) - f(a_n)| \leq M \sum_{n=1}^{\infty} |b_n - a_n|$$

$$\leq M \inf \sum_{n=1}^{\infty} |b_n - a_n|$$

$$\leq M \mu_L^*(E).$$

Infimum takes over all covering classes of E. Thus,

$$\mu_L^*(f(E)) = \inf \sum_{n=1}^{\infty} |f(b_n) - f(a_n)| \le M \mu_L^*(E).$$

(a) Let $E \subset \mathbb{R}$. Show that $\mathcal{F} = \{\emptyset, E, E^c, \mathbb{R}\}$ is the σ -algebra of subsets of \mathbb{R} generated by $\{E\}$

(b) If S and T are collections of subsets of \mathbb{R} , then

$$\sigma(\mathcal{S} \cup \mathcal{T}) = \sigma(\mathcal{S}) \cup \sigma(\mathcal{T}).$$

Is the statement true? Why?

Solution

(a) It is easy to check that \mathcal{F} is a σ -algebra.

Note first that $\{E\} \subset \mathcal{F}$. Hence

$$\sigma(\{E\}) \subset \mathcal{F}.$$
 (i)

On the other hand, since $\sigma(\{E\})$ is a σ -algebra, so $\emptyset, \mathbb{R} \in \sigma(\{E\})$. Also, since $E \in \sigma(\{E\})$, so $E^c \in \sigma(\{E\})$. Hence

$$\mathcal{F} \subset \sigma(\{E\}).$$
 (ii)

From (i) and (ii) it follows that

$$\mathcal{F} = \sigma(\{E\}).$$

(b) No. Here is why.

Take $S = \{(1, 1]\}$ and $T = \{(1, 2]\}$. Then, by part (a),

$$\sigma(\mathcal{S}) = \{\varnothing, (0, 1], (0, 1]^c, \mathbb{R}\} \text{ and } \sigma(\mathcal{T}) = \{\varnothing, (1, 2], (1, 2]^c, \mathbb{R}\}.$$

Therefore

$$\sigma(\mathcal{S}) \cup \sigma(\mathcal{T}) = \{\varnothing, (0, 1], (0, 1]^c, (1, 2], (1, 2]^c, \mathbb{R}\}.$$

We have

$$(0,1] \cup (1,2] = (0,2] \notin \sigma(\mathcal{S}) \cup \sigma(\mathcal{T}).$$

Hence $\sigma(S) \cup \sigma(T)$ is not a σ -algebra. But, by definition, $\sigma(S \cup T)$ is a σ -algebra. And hence it cannot be equal to $\sigma(S) \cup \sigma(T)$.

Problem 23

Consider $\mathcal{F} = \{ E \in \mathbb{R} : either E \text{ is countable or } E^c \text{ is countable} \}.$

- (a) Show that \mathcal{F} is a σ -algebra and \mathcal{F} is a proper sub- σ -algebra of the σ -algebra $\mathcal{B}_{\mathbb{R}}$.
- (b) Show that \mathcal{F} is the σ -algebra generated by $\{\{x\}: x \in \mathbb{R}\}$.
- (c) Find a measure $\lambda: \mathcal{F} \to [0, \infty]$ such that the only λ -null set is \varnothing .

Solution

- (a) We check conditions of a σ -algebra:
- It is clear that \emptyset is countable, so $\emptyset \in \mathcal{F}$.
- Suppose $E \in \mathcal{F}$. Then $E \subset \mathbb{R}$ and E is countable or E^c is countable. This is equivalent to $E^c \subset \mathbb{R}$ and E^c is countable or E is countable. Thus,

$$E \in \mathcal{F} \Rightarrow E^c \in \mathcal{F}$$
.

• Suppose $E_1, E_2, ... \in \mathcal{F}$. Either all E_n 's are countable, so $\bigcup_{n=1}^{\infty} E_n$ is countable. Hence $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}$. Or there exists some $E_{n_0} \in \mathcal{F}$ which is not countable. By definition, $E_{n_0}^c$ must be countable. Now

$$\left(\bigcup_{n=1}^{\infty} E_n\right)^c = \bigcap_{n=1}^{\infty} E_n^c \subset E_{n_0}.$$

This implies that $\left(\bigcup_{n=1}^{\infty} E_n\right)^c$ is countable. Thus

$$\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}.$$

Finally, \mathcal{F} is a σ -algebra. \square

Recall that $\mathcal{B}_{\mathbb{R}}$ is the σ -algebra generated by the family of open sets in \mathbb{R} . It is also generated by the family of closed sets in \mathbb{R} . Now suppose $E \in \mathcal{F}$. If E is countable then we can write

$$E = \{x_1, x_2, ...\} = \bigcup_{n=1}^{\infty} \{x_n\}.$$

Each $\{x_n\}$ is a closed set in \mathbb{R} , so belongs to $\mathcal{B}_{\mathbb{R}}$. Hence $E \in \mathcal{B}_{\mathbb{R}}$. Therefore,

$$\mathcal{F}\subset\mathcal{B}_{\mathbb{R}}$$
.

 \mathcal{F} is a proper subset of $\mathcal{B}_{\mathbb{R}}$. Indeed, $[0,1] \in \mathcal{B}_{\mathbb{R}}$ and $[0,1] \notin \mathcal{F}$. \square

(b) Let $S = \{ \{x\} : x \in \mathbb{R} \}$. Clearly, $S \subset \mathcal{F}$, and so

$$\sigma(\mathcal{S}) \subset \mathcal{F}$$
.

Now take $E \in \mathcal{F}$ and $E \neq \emptyset$. If E is countable then we can write

$$E = \bigcup_{n=1}^{\infty} \underbrace{\{x_n\}}_{\in \mathcal{S}} \in \sigma(\mathcal{S}).$$

Hence

$$\mathcal{F} \subset \sigma(\mathcal{S}).$$

Thus

$$\sigma(\mathcal{S}) = \mathcal{F}.$$

(c) Define the set function $\lambda: \mathcal{F} \to [0, \infty]$ by

$$\lambda(E) = \begin{cases} |E| & \text{if } E \text{ is finite} \\ \infty & \text{otherwise.} \end{cases}$$

We can check that λ is a measure. If $E \neq \emptyset$ then $\lambda(E) > 0$ for every $E \in \mathcal{F}$.

Problem 24

For $E \in \mathfrak{M}_L$ with $\mu_L(E) < \infty$, define a real-valued function φ_E on \mathbb{R} by setting

$$\varphi_E(x) := \mu_L(E \cap (-\infty, x]) \text{ for } x \in \mathbb{R}.$$

- (a) Show that φ_E is an increasing function on \mathbb{R} .
- (b) Show that φ_E satisfies the Lipschitz condition on \mathbb{R} , that is,

$$|\varphi_E(x') - \varphi_E(x'')| \le |x' - x''|$$
 for $x', x'' \in \mathbb{R}$.

Solution

(a) Let $x, y \in \mathbb{R}$. Suppose x < y. It is clear that $(-\infty, x] \subset (-\infty, y]$. Hence, $E \cap (-\infty, x] \subset E \cap (-\infty, y]$ for $E \in \mathfrak{M}_L$. By the monoticity of μ_L we have

$$\varphi_E(x) = \mu_L(E \cap (-\infty, x]) \le \mu_L(E \cap (-\infty, y]) = \varphi_E(y)$$

Thus φ_E is increasing on \mathbb{R} .

(b) Suppose x' < x'' we have

$$E \cap (x', x''] = (E \cap (-\infty, x'']) \setminus (E \cap (-\infty, x']).$$

It follows that

$$\varphi_{E}(x'') - \varphi_{E}(x') = \mu_{L}(E \cap (-\infty, x'']) - \mu_{L}(E \cap (-\infty, x'])$$

$$= \mu_{L}(E \cap (x', x''])$$

$$\leq \mu_{L}((x', x'']) = x'' - x'. \blacksquare$$

Let E be a Lebesgue measurable subset of \mathbb{R} with $\mu_L(E) = 1$. Show that there exists a Lebesgue measurable set $A \subset E$ such that $\mu_L(A) = \frac{1}{2}$.

Solution

Define the function $f: \mathbb{R} \to [0, 1]$ by

$$f(x) = \mu_L(E \cap (-\infty, x]), x \in \mathbb{R}.$$

By Problem 23, we have

$$|f(x) - f(y)| \le |x - y|, \ \forall x, y \in \mathbb{R}.$$

Hence f is (uniformly) continuous on \mathbb{R} . Since

$$\lim_{x \to -\infty} f(x) = 0 \text{ and } \lim_{x \to \infty} f(x) = 1,$$

by the Mean Value Theorem, we have

$$\exists x_0 \in \mathbb{R} \text{ such that } f(x_0) = \frac{1}{2}.$$

Set $A = E \cap (-\infty, x_0]$. Then we have

$$A \subset E$$
 and $\mu_L(A) = \frac{1}{2}$.

Chapter 3

Measurable Functions

Remark:

From now on, measurable means Lebesgue measurable. Also measure means Lebesgue measure, and we write μ instead of μ_L for Lebesgue measure.

1. Definition, basic properties

Proposition 6 (Equivalent conditions)

Let f be an extended real-valued function whose domain D is measurable. Then the following statements are equivalent:

- 1. For each real number a, the set $\{x \in D : f(x) > a\}$ is measurable.
- 2. For each real number a, the set $\{x \in D : f(x) \ge a\}$ is measurable.
- 3. For each real number a, the set $\{x \in D : f(x) < a\}$ is measurable.
- 4. For each real number a, the set $\{x \in D : f(x) \le a\}$ is measurable.

Definition 11 (Measurable function)

An extended real-valued function f is said to be measurable if its domain is measurable and if it satisfies one of the four statements of Proposition 6.

Proposition 7 (Operations)

Let f, g be two measurable real-valued functions defined on the same domain and c a constant. Then the functions f + c, cf, f + g, and fg are also measurable.

Note:

A function f is said to be *Borel measurable* if for each $\alpha \in \mathbb{R}$ the set $\{x: f(x) > \alpha\}$ is a Borel set. Every Borel measurable function is Lebesgue measurable.

2. Equality almost everywhere

- A property is said to hold *almost everywhere* (abbreviated a.e.) if the set of points where it fails to hold is a set of measure zero.
- We say that f = g a.e. if f and g have the same domain and $\mu(\{x \in D : f(x) \neq g(x)\}) = 0$. Also we say that the sequence (f_n) converges to f a.e. if the set $\{x : f_n(x) \nrightarrow f(x)\}$ is a null set.

Proposition 8 (Measurable functions)

If a function f is measurable and f = g a.e., then g is measurable.

3. Sequence of measurable functions

Proposition 9 (Monotone sequence)

Let (f_n) be a monotone sequence of extended real-valued measurable functions on the same measurable domain D. Then $\lim_{n\to\infty} f_n$ exists on D and is measurable.

Proposition 10 Let (f_n) be a sequence of extended real-valued measurable functions on the same measurable domain D. Then $\max\{f_1,...,f_n\}$, $\min\{f_1,...,f_n\}$, $\lim\sup_{n\to\infty}f_n$, $\lim\inf_{n\to\infty}f_n$, $\sup_{n\in\mathbb{N}}$, $\inf_{n\in\mathbb{N}}f_n$ are all measurable.

Proposition 11 If f is continuous a.e. on a measurable set D, then f is measurable.

* * **

Problem 26

Let D be a dense set in \mathbb{R} . Let f be an extended real-valued function on \mathbb{R} such that $\{x: f(x) > \alpha\}$ is measurable for each $\alpha \in D$. Show that f is measurable.

Solution

Let β be an arbitrary real number. For each $n \in \mathbb{N}$, there exists $\alpha_n \in D$ such that $\beta < \alpha_n < \beta + \frac{1}{n}$ by the density of D. Now

$${x: f(x) > \beta} = \bigcup_{n=1}^{\infty} \left\{ x: f(x) \ge \beta + \frac{1}{n} \right\} = \bigcup_{n=1}^{\infty} \{x: f(x) > \alpha_n\}.$$

Since $\bigcup_{n=1}^{\infty} \{x : f(x) > \alpha_n\}$ is measurable (as countable union of measurable sets), $\{x : f(x) > \beta\}$ is measurable. Thus, f is measurable.

Problem 27

Let f be an extended real-valued measurable function on \mathbb{R} . Prove that $\{x : f(x) = \alpha\}$ is measurable for any $\alpha \in \overline{\mathbb{R}}$.

Solution

• For $\alpha \in \mathbb{R}$, we have

$$\{x: f(x) = \alpha\} = \underbrace{\{x: f(x) \le \alpha\}}_{\text{measurable}} \setminus \underbrace{\{x: f(x) < \alpha\}}_{\text{measurable}}.$$

Thus $\{x: f(x) = \alpha\}$ is measurable.

• For $\alpha = \infty$, we have

$$\{x: f(x) = \infty\} = \mathbb{R} \setminus \{x: f(x) < \infty\} = \mathbb{R} \setminus \bigcup_{n \in \mathbb{N}} \underbrace{\{x: f(x) \le n\}}_{\text{measurable}}.$$

Thus $\{x: f(x) = \infty\}$ is measurable.

• For $\alpha = -\infty$, we have

$$\{x:\ f(x)=-\infty\}=\mathbb{R}\setminus\{x:\ f(x)>-\infty\}=\mathbb{R}\setminus\bigcup_{n\in\mathbb{N}}\underbrace{\{x:\ f(x)\geq -n\}}_{\text{measurable}}.$$

Thus $\{x: f(x) = \infty\}$ is measurable.

Problem 28

(a). Let D and E be measurable sets and f a function with domain $D \cup E$. Show that f is measurable if and only if its restriction to D and E are measurable.

(b). Let f be a function with measurable domain D. Show that f is measurable if and only if the function q defined by

$$g(x) = \begin{cases} f(x) & \text{for } x \in D \\ 0 & \text{for } x \notin D \end{cases}$$

is measurable.

Solution

(a) Suppose that f is measurable. Since D and E are measurable subsets of $D \cup E$, the restrictions $f|_D$ and $f|_E$ are measurable.

Conversely, suppose $f|_D$ and $f|_E$ are measurable. For any $\alpha \in \mathbb{R}$, we have

$$\{x: \ f(x) > \alpha\} = \{x \in D: \ f|_D(x) > \alpha\} \cup \{x \in E: \ f|_E(x) > \alpha\}.$$

Each set on the right hand side is measurable, so $\{x: f(x) > \alpha\}$ is measurable. Thus, f is measurable. (b) Suppose that f is measurable. If $\alpha \geq 0$, then $\{x: g(x) > \alpha\} = \{x: f(x) > \alpha\}$, which is measurable. If $\alpha < 0$, then $\{x: g(x) > \alpha\} = \{x: f(x) > \alpha\} \cup D^c$, which is measurable. Hence, g is measurable.

Conversely, suppose that g is measurable. Since $f = g|_D$ and D is measurable, f is measurable.

Problem 29

Let f be measurable and B a Borel set. Then $f^{-1}(B)$ is a measurable set.

Solution

Let \mathcal{C} be the collection of all sets E such that $f^{-1}(E)$ is measurable. We show that \mathcal{C} is a σ -algebra. Suppose $E \in \mathcal{C}$. Since

$$f^{-1}(E^c) = (f^{-1}(E))^c$$
,

which is measurable, so $E^c \in \mathcal{C}$. Suppose (E_n) is a sequence of sets in \mathcal{C} . Since

$$f^{-1}\left(\bigcup_{n} E_{n}\right) = \bigcup_{n} f^{-1}(E_{n}),$$

which is measurable, so $\bigcup_n E_n \in \mathcal{C}$. Thus, \mathcal{C} is a σ -algebra.

Next, we show that all intervals (a,b), for any extended real numbers a,b with a < b, belong to \mathcal{C} . Since f is measurable, $\{x: f(x) > a\}$ and $\{x: f(x) < b\}$ are measurable. It follows that (a,∞) and $(-\infty,b) \in \mathcal{C}$. Furtheremore, we have

$$(a,b) = (-\infty,b) \cap (a,\infty),$$

so $(a, b) \in \mathcal{C}$. Thus, \mathcal{C} is a σ -algebra containing all open intervals, so it contains all Borel sets. Hence $f^{-1}(B)$ is measurable.

Problem 30

Show that if f is measurable real-valued function and g a continuous function defined on \mathbb{R} , then $g \circ f$ is measurable.

Solution

For any $\alpha \in \mathbb{R}$,

$${x: (g \circ f)(x) > \alpha} = (g \circ f)^{-1}((\alpha, \infty)) = f^{-1}(g^{-1}((\alpha, \infty))).$$

By the continuity of g, $g^{-1}((\alpha, \infty))$ is an open set, so a Borel set. By Problem 24, the last set is measurable. Thus, $g \circ f$ is measurable. \square

Problem 31

Let f be an extended real-valued function defined on a measurable set $D \subset \mathbb{R}$.

- (a) Show that if $\{x \in D : f(x) < r\}$ is measurable in \mathbb{R} for every $r \in \mathbb{Q}$, then f is measurable on D.
- (b) What subsets of \mathbb{R} other than \mathbb{Q} have this property?
- (c) Show that if f is measurable on D, then there exists a countable sub-collection $C \subset \mathcal{M}_L$, depending on f, such that f is $\sigma(C)$ -measurable on D.

(Note: $\sigma(\mathcal{C})$ is the σ -algebra generated by \mathcal{C} .)

Solution

(a) To show that f is measurable on D, we show that $\{x \in D : f(x) < a\}$ is measurable for every $a \in \mathbb{R}$. Let $I = \{r \in \mathbb{Q} : r < a\}$. Then I is countable, and we have

$${x \in D : f(x) < a} = \bigcup_{r \in I} {x \in D : f(x) < r}.$$

Since $\{x \in D: f(x) < r\}$ is measurable, $\bigcup_{r \in I} \{x \in D: f(x) < r\}$ is measurable. Thus, $\{x \in D: f(x) < a\}$ is measurable.

(b) Here is the answer to the question:

Claim 1 : If $E \subset \mathbb{R}$ is dense in \mathbb{R} , then E has the property in (a), that is, if $\{x \in D : f(x) < r\}$ is measurable for every $r \in E$ then f is measurable on D. Proof.

Given any $a \in \mathbb{R}$, the interval (a-1,a) intersects E since E is dense. Pick some $r_1 \in E \cap (a-1,a)$. Now the interval (r_1,a) intersects E for the same reason. Pick some $r_2 \in E \cap (r_1,a)$. Repeating this process, we obtain an increasing sequence (r_n) in E which converges to a.

By assumption, $\{x \in D : f(x) < r_n\}$ is measurable, so we have

$${x \in D : f(x) < a} = \bigcup_{n \in \mathbb{N}} {x \in D : f(x) < r_n}$$
 is measurable.

Thus, f is measurable on D.

Claim 2: If $E \subset \mathbb{R}$ is not dense in \mathbb{R} , then E does not have the property in (a). Proof.

Since E is not dense in \mathbb{R} , there exists an interval $[a,b] \subset E$. Let F be a non

measurable set in \mathbb{R} . We define a function f as follows:

$$f(x) = \begin{cases} a & \text{if } x \in F^c \\ b & \text{if } x \in F. \end{cases}$$

For $r \in E$, by definition of F, we observe that

- If r < a then $f^{-1}([-\infty, r)) = \emptyset$.
- If r > b then $f^{-1}([-\infty, r)) = \overline{\mathbb{R}}$.
- If $r = \frac{a+b}{2}$ then $f^{-1}([-\infty, r)) = F^c$.

Since F is non measurable, F^c is also non measurable. Through the above observation, we see that

$$\left\{x \in D: f(x) < \frac{a+b}{2}\right\}$$
 non measurable.

Thus, f is not measurable.

<u>Conclusion</u>: Only subsets of \mathbb{R} which are dense in \mathbb{R} have the property in (a).

(c) Let $C = \{C_r\}_{r \in \mathbb{Q}}$ where $C_r = \{x \in D : f(x) < r\}$ for every $r \in \mathbb{Q}$. Clearly, C is a countable family of subsets of \mathbb{R} . Since f is measurable, C_r is measurable. Hence, $C \subset \mathcal{M}_L$. Since \mathcal{M}_L is a σ -algebra, by definition, we must have $\sigma(C) \subset \mathcal{M}_L$. Let $a \in \mathbb{R}$. Then

$$\{x \in D : f(x) < a\} = \bigcup_{r < a} \{x \in D : f(x) < r\} = \bigcup_{r < a} C_r.$$

It follows that $\{x \in D : f(x) < a\} \in \sigma(\mathcal{C}).$

Thus, f is $\sigma(\mathcal{C})$ -measurable on D.

Problem 32

Show that the following functions defined on \mathbb{R} are all Borel measurable, and hence Lebesgue measurable also on \mathbb{R} :

(a)
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational.} \end{cases}$$
 (b) $g(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ -x & \text{if } x \text{ is irrational.} \end{cases}$

(c)
$$h(x) = \begin{cases} \sin x & \text{if } x \text{ is rational} \\ \cos x & \text{if } x \text{ is irrational.} \end{cases}$$

Solution

- (a) For any $a \in \mathbb{R}$, let $E = \{x \in D : f(x) < a\}$.
 - If a > 1 then $E = \mathbb{R}$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).
 - If $0 < a \le 1$ then $E = \mathbb{Q}$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).
 - If $a \leq 0$ then $E = \emptyset$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).

Thus, f is Borel measurable.

(b) Consider g_1 defined on \mathbb{Q} by $g_1(x) = x$, then $g|_{\mathbb{Q}} = g_1$. Consider g_2 defined on $\mathbb{R} \setminus \mathbb{Q}$ by g(x) = -x, then $g|_{\mathbb{R} \setminus \mathbb{Q}} = g_2$. Notice that \mathbb{R} , $\mathbb{R} \setminus \mathbb{Q} \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable). For any $a \in \mathbb{R}$, we have

$$\{x \in D : f_1(x) < a\} = [-\infty, a) \cap \mathbb{Q} \in \mathcal{B}_{\mathbb{R}}$$
 (Borel measurable),

and

$$\{x \in D : f_2(x) < a\} = [-\infty, a) \cap (\mathbb{R} \setminus \mathbb{Q}) \in \mathcal{B}_{\mathbb{R}}$$
 (Borel measurable).

Thus, g is Borel measurable.

(c) Use the same way as in (b).

Problem 33

Let f be a real-valued increasing function on \mathbb{R} . Show that f is Borel measurable, and hence Lebesgue measurable also on \mathbb{R} .

Solution

For any $a \in \mathbb{R}$, let $E = \{x \in D : f(x) \ge a\}$. Let $\alpha = \inf E$. Since f is increasing,

- if $\operatorname{Im}(f) \subset (-\infty, a)$ then $E = \emptyset$.
- if $\operatorname{Im}(f) \nsubseteq (-\infty, a)$ then E is either (α, ∞) or $[\alpha, \infty)$.

Since \emptyset , (α, ∞) , $[\alpha, \infty)$ are Borel sets, so f is Borel measurable.

Problem 34

If (f_n) is a sequence of measurable functions on $D \subset \mathbb{R}$, then show that

$$\{x \in D : \lim_{n \to \infty} f_n(x) \text{ exists}\}$$
 is measurable.

40

Solution

Recall that if f_n 's are measurable, then $\limsup_{n\to\infty} f_n$, $\liminf_{n\to\infty} f_n$ and $g(x) = \limsup_{n\to\infty} f_n - \liminf_{n\to\infty} f_n$ are also measurable, and if h is measurable then $\{x\in D:\ h(x)=\alpha\}$ is measurable (Problem 22). Now we have

$$E = \{x \in D : \lim_{n \to \infty} f_n(x) \text{ exists}\} = \{x \in D : g(x) = 0\}.$$

Thus, E is measurable.

Problem 35

- (a) If $g: \mathbb{R} \to \mathbb{R}$ is continuous and $f: \mathbb{R} \to \mathbb{R}$ is measurable then $g \circ f$ is measurable.
- (b) If f is measurable then |f| is measurable. Does the converse hold?

Solution

(a) For any $a \in \mathbb{R}$, then

$$E = \{x : (g \circ f)(x) < a\} = (g \circ f)^{-1}(-\infty, a)$$
$$= f^{-1}(g^{-1}(-\infty, a)).$$

Since g is continuous, $g^{-1}(-\infty, a)$ is open. Then there is a family of open disjoint intervals $\{I_n\}_{n\in\mathbb{N}}$ such that $g^{-1}(-\infty, a) = \bigcup_{n\in\mathbb{N}} I_n$. Hence,

$$E = f^{-1}\left(\bigcup_{n \in \mathbb{N}} I_n\right) = \bigcup_{n \in \mathbb{N}} f^{-1}(I_n).$$

Since f is measurable, $f^{-1}(I_n)$ is measurable. Hence E is measurable. This tells us that $g \circ f$ is measurable.

(b) If g(u) = |u| then g is continuous. We have

$$(g \circ f)(x) = g(f(x)) = |f(x)|.$$

By part (a), $g \circ f = |f|$ is measurable.

The converse is not true.

Let E be a non-measurable subset of \mathbb{R} . Consider the function:

$$f(x) = \begin{cases} 1 & \text{if } x \in E \\ -1 & \text{if } x \notin E. \end{cases}$$

Then $f^{-1}(\frac{1}{2}, \infty) = E$, which is not measurable. Since $(\frac{1}{2}, \infty)$ is open, so f is not measurable, while |f| = 1 is measurable.

Problem 36

Let $(f_n: n \in \mathbb{N})$ and f be an extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$ such that $\lim_{n\to\infty} f_n = f$ on D. Then for every $\alpha \in \mathbb{R}$ prove that:

(i)
$$\mu\{x \in D : f(x) > \alpha\} \le \liminf_{n \to \infty} \mu\{x \in D : f_n(x) \ge \alpha\}$$

(ii)
$$\mu\{x \in D : f(x) < \alpha\} \le \liminf_{n \to \infty} \mu\{x \in D : f_n(x) \le \alpha\}.$$

Solution

Recall that, for any sequence $(E_n)_{n\in\mathbb{N}}$ of measurable sets,

$$\mu(\liminf_{n\to\infty} E_n) \le \liminf_{n\to\infty} \mu(E_n), \quad (*)$$
$$\liminf_{n\to\infty} E_n = \bigcup_{n\in\mathbb{N}} \bigcap_{k>n} E_k = \lim_{n\to\infty} \bigcap_{k>n} E_k.$$

Now for every $\alpha \in \mathbb{R}$, let $E_k = \{x \in D : f_k(x) \ge \alpha\}$ for each $k \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \inf E_n = \lim_{n \to \infty} \bigcap_{k \ge n} E_k$$

$$= \lim_{n \to \infty} \bigcap_{k \ge n} \{x \in D : f_k(x) \ge \alpha\}$$

$$= \{x \in D : f(x) > \alpha\} \text{ since } f_k(x) \to f(x) \text{ on } D.$$

Using (*) we get

$$\mu\{x \in D : f(x) > \alpha\} \le \liminf_{n \to \infty} \mu\{x \in D : f_n \ge \alpha\}.$$

For the second inequality, we use the similar argument.

Let $F_k = \{x \in D : f_k(x) \le \alpha\}$ for each $k \in \mathbb{N}$. Then

$$\liminf_{n \to \infty} E_n = \lim_{n \to \infty} \bigcap_{k \ge n} F_k$$

$$= \lim_{n \to \infty} \bigcap_{k \ge n} \{x \in D : f_k(x) \le \alpha\}$$

$$= \{x \in D : f(x) < \alpha\} \text{ since } f_k(x) \to f(x) \text{ on } D.$$

Using (*) we get

$$\mu\{x \in D: f(x) < \alpha\} \le \liminf_{n \to \infty} \mu\{x \in D: f_n \le \alpha\}.$$

Simple functions

Definition 12 (Simple function)

A function $\varphi: X \to \mathbb{R}$ is simple if it takes only a finite number of different values.

Definition 13 (Canonical representation)

Let φ be a simple function on X. Let $\{a_1, ..., a_n\}$ the set of distinct valued assumed by φ on D. Let $D_i = \{x \in X : \varphi(x) = a_i\}$ for i = 1, ..., n. Then the expression

$$\varphi = \sum_{i=1}^{n} a_i \chi_{D_i}$$

is called the canonical representation of φ .

It is evident that $D_i \cap D_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^n D_i = X$.

* * **

Problem 37

(a). Show that

$$\chi_{A \cap B} = \chi_A \cdot \chi_B$$

$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \cdot \chi_B$$

$$\chi_{A^c} = 1 - \chi_A.$$

(b). Show that the sum and product of two simple functions are simple functions.

Solution

(a). We have

$$\chi_{A \cap B}(x) = 1 \iff x \in A \text{ and } x \in B$$

$$\iff \chi_A(x) = 1 = \chi_B(x).$$

Thus,

$$\chi_{A\cap B}=\chi_A\cdot\chi_B.$$

We have

$$\chi_{A \cup B}(x) = 1 \iff x \in A \cup B.$$

If $x \in A \cap B$ then $\chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x) = 1 + 1 - 1 = 1$. If $x \notin A \cap B$, then $x \in A \setminus B$ or $x \in B \setminus A$. Then $\chi_A(x) + \chi_B(x) = 1$ and $\chi_A \cdot \chi_B \chi_A(x) + \chi_B(x) = 0$. Also,

$$\chi_{A \cup B}(x) = 0 \iff x \notin A \cup B.$$

Then

$$\chi_A(x) = \chi_B(x) = \chi_A(x) \cdot \chi_B(x) = 0.$$

Thus,

$$\chi_{A\cup B} = \chi_A + \chi_B - \chi_A \cdot \chi_B.$$

If $\chi_{A^c}(x) = 1$, then $x \notin A$, so $\chi_A(x) = 0$. If $\chi_{A^c}(x) = 0$, then $x \in A$, so $\chi_A(x) = 1$. Thus,

$$\chi_{A^c} = 1 - \chi_A$$
.

(b). Let φ be a simple function having values $a_1, ..., a_n$. Then

$$\varphi = \sum_{i=1}^{n} a_i \chi_{A_i}$$
 where $A_i = \{x : \varphi(x) = a_i\}.$

Similarly, if ψ is a simple function having values $b_1, ..., b_m$. Then

$$\psi = \sum_{j=1}^{m} b_j \chi_{B_j}$$
 where $B_j = \{x : \psi(x) = b_j\}.$

Define $C_{ij} := A_i \cap B_j$. Then

$$A_i \subset X = \bigcup_{j=1}^m B_j$$
 and so $A_i = A_i \cap \bigcup_{j=1}^m B_j = \bigcup_{j=1}^m C_{ij}$.

Similarly, we have

$$B_j = \bigcup_{i=1}^n C_{ij}.$$

Since the C_{ij} 's are disjoint, this means that (see part (a))

$$\chi_{A_i} = \sum_{j=1}^{m} \chi_{C_{ij}}$$
 and $\chi_{B_j} = \sum_{i=1}^{n} \chi_{C_{ij}}$.

Thus

$$\varphi = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i \chi_{C_{ij}}$$
 and $\psi = \sum_{i=1}^{n} \sum_{j=1}^{m} b_j \chi_{C_{ij}}$.

CHAPTER 3. MEASURABLE FUNCTIONS

Hence

$$\varphi + \psi = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i + b_j) \chi_{C_{ij}}$$
 and $\varphi \psi = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \chi_{C_{ij}}$.

They are simple function.

Problem 38

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a simple function defined by

$$\sum_{i=1}^{n} a_i \chi_{A_i} \quad where \quad A_i = \{ x \in \mathbb{R} : \ \varphi(x) = a_i \}.$$

Prove that φ is measurable if and only if all the A_i 's are measurable.

Solution

Assume that A_i is measurable for all i = 1, ..., n. Then for any $c \in \mathbb{R}$, we have

$$\{x: \ \varphi(x) > c\} = \bigcup_{a_i > c} A_i.$$

Since every A_i is measurable, $\bigcup_{a_i>c} A_i$ is measurable. Thus $\{x: \varphi(x)>c\}$ is measurable. By definition, φ is measurable.

Conversely, suppose φ is measurable. We can suppose $a_1 < a_2 < ... < a_n$. Given $j \in \{1, 2, ..., n\}$, choose c_1 and c_2 such that $a_{j-1} < c_1 < a_j < c_2 < a_{j+1}$. (If j = 1 or j = n, part of this requirement is empty.) Then

$$A_{j} = \left(\bigcup_{a_{i}>c_{1}} A_{i}\right) \setminus \left(\bigcup_{a_{i}>c_{2}} A_{i}\right)$$

$$= \underbrace{\left\{x: \varphi(x)>c_{1}\right\}}_{\text{measurable}} \setminus \underbrace{\left\{x: \varphi(x)>c_{2}\right\}}_{\text{measurable}}.$$

Thus, A_j is measurable for all $j \in \{1, 2, ..., n\}$.

44

Chapter 4

Convergence a.e. and Convergence in Measure

1. Convergence almost everywhere

Definition 14 Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$.

1. We say that $\lim_{n\to\infty} f_n$ exists a.e. on D if there exists a null set N such that $N\subset D$ and $\lim_{n\to\infty} f_n(x)$ exists for every $x\in D\setminus N$.

2. We say that (f_n) converges a.e. on D if $\lim_{n\to\infty} f_n(x)$ exists and $\lim_{n\to\infty} f_n(x) \in \mathbb{R}$ for every $x \in D \setminus N$.

Proposition 12 (Uniqueness)

Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let g_1 and g_2 be two extended real-valued measurable functions on D. Then

$$\left[\lim_{n\to\infty} f_n = g_1 \text{ a.e. on } D \text{ and } \lim_{n\to\infty} f_n = g_2 \text{ a.e. on } D\right] \Longrightarrow g_1 = g_2 \text{ a.e. on } D.$$

Theorem 1 (Borel-Cantelli Lemma)

For any sequence (A_n) of measurable subsets in \mathbb{R} , we have

$$\sum_{n\in\mathbb{N}}\mu(A_n)<\infty\Longrightarrow\mu\bigl(\limsup_{n\to\infty}A_n\bigr)=0.$$

Definition 15 (Almost uniform convergence)

Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$ and f a real-valued measurable functions on D. We say that (f_n) converges a.u. on D to f if for every $\eta > 0$ there exists a measurable set $E \subset D$ such that $\mu(E) < \eta$ and (f_n) converges uniformly to f on $D \setminus E$.

Theorem 2 (Egoroff)

Let D be a measurable set with $\mu(D) < \infty$. Let (f_n) be a sequence extended real-valued measurable functions on D and f a real-valued measurable functions on D. If (f_n) converges to f a.e. on D, then (f_n) converges to f a.u. on D.

www.MathVn.com⁴⁵- Math Vietnam

46 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

2. Convergence in measure

Definition 16 Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. We say that (f_n) converges in measure μ on D if there exists a real-valued measurable function f on D such that for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty} \mu\{D: |f_n-f|\geq \varepsilon\}:=\lim_{n\to\infty} \mu\{x\in D: |f_n(x)-f(x)|\geq \varepsilon\}=0.$$

That is,

$$\forall \varepsilon > 0, \ \forall \eta > 0, \ \exists N(\varepsilon, \eta) \in \mathbb{N}: \ \mu\{D: |f_n - f| \ge \varepsilon\} < \eta \ \text{ for } \ n \ge N(\varepsilon, \eta).$$

We write $f_n \xrightarrow{\mu} f$ on D for this convergence.

Proposition 13 (Uniqueness)

Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f and g be two real-valued measurable functions on D. Then

$$[f_n \xrightarrow{\mu} f \text{ on } D \text{ and } f_n \xrightarrow{\mu} g \text{ on } D] \Longrightarrow f = g \text{ a.e. on } D.$$

Proposition 14 (Equivalent conditions)

$$(1) \ [f_n \xrightarrow{\mu} f \ on \ D] \Longleftrightarrow \forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}: \ \mu\{D: \ |f_n - f| \ge \varepsilon\} < \varepsilon \ for \ n \ge N(\varepsilon).$$

(2)
$$[f_n \xrightarrow{\mu} f \text{ on } D] \iff \forall m \in \mathbb{N}, \exists N(m) : \mu \Big\{ D : |f_n - f| \ge \frac{1}{m} \Big\} < \frac{1}{m} \text{ for } m \ge N(m).$$

3. Convergence a.e. and convergence in measure

Theorem 3 (Lebesgue)

Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f be a real-valued measurable functions on D. Suppose

1.
$$f_n \to f$$
 a.e. on D ,

2.
$$\mu(D) < \infty$$
.

Then $f_n \xrightarrow{\mu} f$ on D.

Theorem 4 (Riesz)

Let (f_n) be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f be a real-valued measurable functions on D. If $f_n \stackrel{\mu}{\longrightarrow} f$ on D, then there exists a subsequence (f_{n_k}) which converges to f a.e. on D.

* * **

Problem 39(An exercise to warn up.)

- 1. Consider the sequence (f_n) defined on \mathbb{R} by $f_n = \chi_{[n,n+1]}$, $n \in \mathbb{N}$ and the function $f \equiv 0$. Does (f_n) converge to f a.e.? a.u.? in measure?
- 2. Same questions with $f_n = n\chi_{[0,\frac{1}{n}]}$.

(Note: χ_A is the characteristic function of the set A. Try to write your solution.)

Problem 40

Let (f_n) be a sequence of extended real-valued measurable functions on X and let f be an extended real-valued function which is finite a.e. on X. Suppose $\lim_{n\to\infty} f_n = f$ a.e. on X. Let $\alpha \in [0, \mu(X))$ be arbitrarily chosen. Show that for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $\mu\{X : |f_n - f| < \varepsilon\} \ge \alpha$ for $n \ge N$.

Solution

Let Z be a null set such that f is finite on $X \setminus Z$. Since $f_n \to f$ a.e. on $X, f_n \to f$ a.e. on $X \setminus Z$. For every $\varepsilon > 0$ we have¹

$$\mu(\limsup_{n \to \infty} \{X \setminus Z : |f_n - f| \ge \varepsilon\}) = 0$$

$$\Rightarrow \limsup_{n \to \infty} \mu\{X \setminus Z : |f_n - f| \ge \varepsilon\} = 0$$

$$\Rightarrow \lim_{n \to \infty} \mu\{X \setminus Z : |f_n - f| \ge \varepsilon\} = 0$$

The last condition is equivalent to

$$\lim_{n \to \infty} \mu\{X \setminus Z : |f_n - f| < \varepsilon\} = \mu(X \setminus Z) = \mu(X)$$

$$\Leftrightarrow \forall \eta > 0, \exists N \in \mathbb{N} : \mu(X) - \mu\{X \setminus Z : |f_n - f| < \varepsilon\} \le \eta \text{ for all } n \ge N.$$

Let us take $\eta = \mu(X) - \alpha > 0$. Then we have

$$\exists N \in \mathbb{N} : \ \mu\{X \setminus Z : \ |f_n - f| < \varepsilon\} \ge \alpha \ \text{ for all } \ n \ge N.$$

Since
$$\{X: |f_n - f| < \varepsilon\} \supset \{X \setminus Z: |f_n - f| < \varepsilon\}$$
, so we have

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : n \ge N \Rightarrow \mu(\{X : |f_n - f| < \varepsilon\}) \ge \alpha.$$

$$\mu(\limsup_{n\to\infty} E_n) \ge \limsup_{n\to\infty} \mu(E_n).$$

¹See Problem 11b. We have

48 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

Problem 41

(a) Show that the condition

$$\lim_{n \to \infty} \mu \{ x \in D : |f_n(x) - f(x)| > 0 \} = 0$$

implies that $f_n \xrightarrow{\mu} f$ on D.

- (b) Show that the converse is not true.
- (c) Show that the condition in (a) implies that for a.e. $x \in D$ we have $f_n(x) =$
- f(x) for infinitely many $n \in \mathbb{N}$.

Solution

(a) Given any $\varepsilon > 0$, for every $n \in \mathbb{N}$, let

$$E_n = \{x \in D : |f_n(x) - f(x)| > \varepsilon\}; \quad F_n = \{x \in D : |f_n(x) - f(x)| > 0\}.$$

Then we have for all $n \in \mathbb{N}$

$$x \in E_n \Rightarrow |f_n(x) - f(x)| > \varepsilon$$

 $\Rightarrow |f_n(x) - f(x)| > 0$
 $\Rightarrow x \in F_n.$

Consequently, $E_n \subset F_n$ and $\mu(E_n) \leq \mu(F_n)$ for all $n \in \mathbb{N}$. By hypothesis, we have that $\lim_{n\to\infty} \mu(F_n) = 0$. This implies that $\lim_{n\to\infty} \mu(E_n) = 0$. Thus, $f_n \stackrel{\mu}{\to} f$.

(b) The converse of (a) is false.

Consider functions:

$$f_n(x) = \frac{1}{n}, \quad x \in [0, 1] \quad n \in \mathbb{N}.$$

 $f(x) = 0, \quad x \in [0, 1].$

Then $f_n \to f$ (pointwise) on [0,1]. By Lebesgue Theorem $f_n \xrightarrow{\mu} f$ on [0,1]. But for every $n \in \mathbb{N}$

$$|f_n(x) - f(x)| = \frac{1}{n} > 0, \ \forall x \in [0, 1].$$

In other words,

$${x \in D : |f_n(x) - f(x)| > 0} = [0, 1].$$

Thus,

$$\lim_{n \to \infty} \mu \{ x \in D : |f_n(x) - f(x)| > 0 \} = 1 \neq 0.$$

(c) Recall that (Problem 11a)

$$\mu(\liminf_{n\to\infty} E_n) \le \liminf_{n\to\infty} \mu(E_n).$$
 (*)

Let $E_n = \{x \in D : f_n(x) \neq f(x)\}$ and $E = \liminf_{n \to \infty} E_n$. By (a),

$$\liminf_{n\to\infty}\mu(E_n)=\lim_{n\to\infty}\mu(E_n)=0.$$

Therefore, by (*), $\mu(E) = 0$. By definition, we have

$$E = \bigcup_{n \in \mathbb{N}} \bigcap_{k > n} E_k.$$

Hence, $x \notin E$ whenever $x \in E_n^c$ for infinitely many n's, that is $f_n(x) = f(x)$ a.e. in D for infinitely many n's.

Problem 42

Suppose $f_n(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $x \in D \setminus Z$ with $\mu(Z) = 0$. If $f_n \xrightarrow{\mu} f$ on D, then prove that $f_n \to f$ a.e. on D.

Solution

Let $B = D \setminus Z$. Since $f_n \xrightarrow{\mu} f$ on D, $f_n \xrightarrow{\mu} f$ on B. Then, By Riesz theorem, there exists a sub-sequence (f_{n_k}) of (f_n) such that $f_{n_k} \to f$ a.e. on B.

Let $C = \{x \in B : f_{n_k} \to f\}$. Then $\mu(C) = 0$ and $f_{n_k} \to f$ on $B \setminus C$.

From $f_n(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$, and since $n_k \geq k$, we get $f_k \leq f_{n_k}$ for all $k \in \mathbb{N}$. Therefore

$$|f_k - f| \le |f_{n_k} - f|.$$

This implies that $f_k \to f$ on $B \setminus C$. Since $B \setminus C = D \setminus (Z \cup C)$ and $\mu(Z \cup C) = 0$, it follows that $f_n \to f$ a.e. on $D = \blacksquare$.

Problem 43

Show that if $f_n \xrightarrow{\mu} f$ on D and $g_n \xrightarrow{\mu} g$ on D then $f_n + g_n \xrightarrow{\mu} f + g$ on D.

Solution

Since $f_n \xrightarrow{\mu} f$ and $g_n \xrightarrow{\mu} g$ on D, for every $\varepsilon > 0$,

(4.1)
$$\lim_{n \to \infty} \mu\{D : |f_n - f| \ge \frac{\varepsilon}{2}\} = 0$$

(4.2)
$$\lim_{n \to \infty} \mu\{D : |g_n - g| \ge \frac{\varepsilon}{2}\} = 0.$$

Now

$$|(f_n + g_n) - (f + g)| \le |f_n - f| + |g_n - g|.$$

50 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

By the triangle inequality above, if $|(f_n + g_n) - (f + g)| \ge \varepsilon$ is true, then at least one of the two following inequalities must be true:

$$|f_n - f| \ge \frac{\varepsilon}{2}$$
 or $|g_n - g| \ge \frac{\varepsilon}{2}$.

Hence

$$\{D: |(f_n+g_n)-(f+g)| \ge \varepsilon\} \subset \left\{D: |f_n-f| \ge \frac{\varepsilon}{2}\right\} \cup \left\{D: |g_n-g| \ge \frac{\varepsilon}{2}\right\}.$$

Therefore,

$$\mu\{D: |(f_n+g_n)-(f+g)| \ge \varepsilon\} \le \mu\Big\{D: |f_n-f| \ge \frac{\varepsilon}{2}\Big\} + \mu\Big\{D: |g_n-g| \ge \frac{\varepsilon}{2}\Big\}.$$

From (4.1) and (4.2) we obtain

$$\lim_{n \to \infty} \mu\{D: |(f_n + g_n) - (f + g)| \ge \varepsilon\} = 0.$$

That is, by definition, $f_n + g_n \xrightarrow{\mu} f + g$ on D.

Problem 44

Show that if $f_n \xrightarrow{\mu} f$ on D and $g_n \xrightarrow{\mu} g$ on D and $\mu(D) < \infty$, then $f_n g_n \xrightarrow{\mu} f g$ on D.

(Assume that both f_n and g_n are real-valued for every $n \in \mathbb{N}$ so that the multiplication $f_n g_n$ is possible.)

Solution

For every $\varepsilon > 0$ and $\delta > 0$, we want $\mu\{|f_ng_n - fg| \ge \varepsilon\} < \delta$ for n large enough. Notice that

$$(*) ||f_n g_n - fg| \le |f_n g_n - fg_n| + |fg_n - fg| \le |f_n - f||g_n| + |f||g_n - g|.$$

For any $N \in \mathbb{N}$, let

$$E_N = \{D: |f| > N\} \cup \{D: |g| > N\}.$$

It is clear that $E_N \supset E_{N+1}$ for every $N \in \mathbb{N}$. Since $\mu(D) < \infty$, we have

$$\lim_{N \to \infty} \mu(E_N) = \mu\left(\bigcap_{N \in \mathbb{N}} E_N\right) = \mu(\varnothing) = 0.$$

It follows that, we can take N large enough to get, for every $\delta > 0$,

$$(**)$$
 $\frac{\varepsilon}{2N} < 1$ and $\mu(E_N) < \frac{\delta}{3}$.

Observe that

$$\{D: |g_n| > N+1\} \subset \left\{D: |g_n - g| \ge \frac{\varepsilon}{2N}\right\} \cup E_N$$

(since $|g_n| \le |g_n - g| + |g|$). Now if we have

$$|f_n - f| \ge \frac{\varepsilon}{2(N+1)}$$
; $|g_n| > N+1$; $|g_n - g| \ge \frac{\varepsilon}{2N}$, and $|f| > N$,

then (*) implies

$$\{D: |f_n g_n - fg| \ge \varepsilon\} \subset \left\{D: |f_n - f| \ge \frac{\varepsilon}{2(N+1)}\right\} \cup E_N$$

$$\cup \left\{D: |g_n - g| \ge \frac{\varepsilon}{2N}\right\} \cup \{D: |g_n| > N+1\}.$$

By assumption, given $\varepsilon > 0$, $\delta > 0$, for n > N, we have

$$\mu \Big\{ D: |f_n - f| \ge \frac{\varepsilon}{2(N+1)} \Big\} < \frac{\delta}{3}$$
$$\mu \Big\{ D: |g_n - g| \ge \frac{\varepsilon}{2N} \Big\} < \frac{\delta}{3}.$$

From these results, from (*), and (**) we get

$$\mu\{D: |f_ng_n - fg| \ge \varepsilon\} < \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta.$$

Problem 45

- (a) Definition of "Almost uniform convergence" (a.u).
- (b) Show that if $f_n \to f$ a.u on D then $f_n \xrightarrow{\mu} f$ on D. (c) Show that if $f_n \to f$ a.u on D then $f_n \to f$ a.e. on D.

Solution

- (a) $\forall \varepsilon > 0, \exists E \subset D$ such that $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on $D \setminus E$.
- (b) Suppose that $f_n \to f$ a.u on D and f_n does not converges to f in measure on D. Then there exists an $\varepsilon_0 > 0$ such that

$$\mu\{x \in D: |f_n(x) - f(x)| > \varepsilon_0\} \to 0 \text{ as } n \to \infty.$$

52 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

We can choose $n_1 < n_2 < \dots$ such that

$$\mu\{x\in D:\; |f_{n_k}(x)-f(x)|>\varepsilon_0\}\geq r\;\;\text{for some}\;\; r>0\;\;\text{and}\;\;\forall k\in\mathbb{N}.$$

Now since $f_n \to f$ a.u on D,

$$\exists E \subset D \text{ such that } \mu(E) < \frac{r}{2} \text{ and } f_n \to f \text{ uniformly on } D \setminus E.$$

Let $C = \{x \in D : |f_{n_k}(x) - f(x)| > \varepsilon_0\} \quad \forall k \in \mathbb{N}$. Then $\mu(C) \geq r$. Since $f_n \to f$ uniformly on $D \setminus E$,

$$\exists N: n \geq N \Rightarrow |f_n(x) - f(x)| \leq \varepsilon_0, \ \forall x \in D \setminus E.$$

Thus,

$$C \subset (D \setminus E)^c = E$$
.

Hence,

$$0 < r \le \mu(C) \le \mu(E) < \frac{r}{2}.$$

This is a contradiction.

(c) Since $f_n \to f$ a.u. on D, for every $n \in \mathbb{N}$, there exists $E_n \subset D$ such that $\mu(E_n) < \frac{1}{n}$ and $f_n \to f$ uniformly on $D \setminus E_n$. Let $E = \bigcap_{n \in \mathbb{N}} E_n$, then $\mu(E) = 0$. Since $f_n \to f$ on $D \setminus E_n$ for every $n \in \mathbb{N}$, $f_n \to f$ on

$$\bigcup_{n\in\mathbb{N}} (D\setminus E_n) = D\setminus \bigcap_{n\in\mathbb{N}} E_n = D\setminus E.$$

Since $\mu(E) = 0$, $f_n \to f$ a.e. on D

Chapter 5

Integration of Bounded Functions on Sets of Finite Measure

In this chapter we suppose $\mu(D) < \infty$.

1. Integration of simple functions

Definition 17 (Lebesgue integral of simple functions)

Let φ be a simple function on D and $\varphi = \sum_{i=1}^{n} a_i \chi_{D_i}$ be its canonical representation. The Lebesgue integral of φ on D is defined by

$$\int_{D} \varphi(x)\mu(dx) = \sum_{i=1}^{n} a_{i}\mu(D_{i}).$$

We usually use simple notations for the integral of φ :

$$\int_{D} \varphi d\mu, \quad \int_{D} \varphi(x) dx \quad or \quad \int_{D} \varphi.$$

If $\int_D \varphi d\mu < \infty$, then we say that φ is integrable on D.

Proposition 15 (properties of integral of simple functions)

- 1. $\mu(D) = 0 \Rightarrow \int_D \varphi d\mu = 0$.
- 2. $\varphi \geq 0$, $E \subset D \Rightarrow \int_{E} \varphi d\mu \leq \int_{D} \varphi d\mu$.
- 3. $\int_D c\varphi d\mu = c \int_D \varphi d\mu$.
- 4. $\int_{D} \varphi d\mu = \sum_{i=1}^{n} \int_{D_{i}} \varphi d\mu.$
- 5. $\int_D c\varphi d\mu = c \int_D \varphi d\mu$ (c is a constant).
- 6. $\int_D (\varphi_1 + \varphi_2) d\mu = \int_D \varphi_1 d\mu + \int_D \varphi_2 d\mu.$
- 7. $\varphi_1 = \varphi_2$ a.e. on $D \Rightarrow \int_D \varphi_1 d\mu = \int_D \varphi_2 d\mu$.

www.MathVn.com⁵³- Math Vietnam

54CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

2. Integration of bounded functions

Definition 18 (Lebesgue integral of bounded functions)

Let f be a bounded real-valued measurable function on D. Let Φ be the collection of all simple functions on D. We define the Lebesgue integral of f on D by

$$\int_D f d\mu = \inf_{\psi \geq f} \int_D \psi d\mu = \sup_{\varphi < f} \int_D \varphi d\mu \quad where \quad \varphi, \psi \in \Phi.$$

If $\int_D f d\mu < \infty$, then we say that f is integrable on D.

Proposition 16 (properties of integral of bounded functions)

- 1. $\int_D cf d\mu = c \int_D f d\mu$.
- 2. $\int_D (f+g)d\mu = \int_D f d\mu + \int_D g d\mu$.
- 3. f = g a.e. on $D \Rightarrow \int_D f d\mu = \int_D g d\mu$.
- 4. $f \leq g$ on $D \Rightarrow \int_D f d\mu \leq \int_D g d\mu$.
- 5. $|f| \le M$ on $D \Rightarrow \left| \int_D f d\mu \right| \le \int_D |f| d\mu \le M\mu(D)$.
- $\label{eq:conditional} \text{6. } f \geq 0 \text{ a.e. on } D \text{ and } \int_D f d\mu = 0 \ \Rightarrow \ f = 0 \text{ a.e. on } D.$
- 7. If (D_n) be a disjoint sequence of measurable subset $D_n \subset D$ with $\bigcup_{n \in \mathbb{N}} D_n = D$ then

$$\int_D f d = \mu \sum_{n \in \mathbb{N}} \int_{D_n} f d\mu.$$

Theorem 5 (Bounded convergence theorem)

Suppose that (f_n) is a uniformly bounded sequence of real-valued measurable functions on D, and f is a bounded real-valued measurable function on D. If $f_n \to f$ a.e. on D, then

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu = 0.$$

In particular,

$$\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu.$$

* * **

Problem 46

Let f be an extended real-valued measurable function on a measurable set D. For $M_1, M_2 \in \mathbb{R}$, $M_1 < M_2$, let the truncation of f at M_1 and M_2 be defined by

$$g(x) = \begin{cases} M_1 & \text{if } f(x) < M_1 \\ f(x) & \text{if } M_1 \le f(x) \le M_2 \\ M_2 & \text{if } f(x) > M_2. \end{cases}$$

Show that g is measurable on D.

Solution

Let $a \in \mathbb{R}$. We need to show that the set $E = \{x \in D : g(x) > a\}$ is measurable. There are three cases to consider:

- 1. If $a \geq M_2$ then $E = \emptyset$ which is measurable.
- 2. If $a < M_1$ then E = D which is measurable.
- 3. If $M_1 \le a < M_2$ then $E = \{x \in D : f(x) > a\}$ which is measurable.

Thus, in all three cases E is measurable, so q is measurable.

Problem 47

Given a measure space (X, \mathcal{A}, μ) . Let f be a bounded real-valued \mathcal{A} -measurable function on $D \in \mathcal{A}$ with $\mu(D) < \infty$. Suppose $|f(x)| \leq M$, $\forall x \in D$ for some constant M > 0.

- (a) Show that if $\int_D f d\mu = M\mu(D)$, then f = M a.e. on D.
- (b) Show that if f < M a.e. on D and if $\mu(D) > 0$, then $\int_D f d\mu < M\mu(D)$.

Solution

(a) For every $n \in \mathbb{N}$, let $E_n = \{x \in D : f(x) < M - \frac{1}{n}\}$. Then, since $f \leq M$ on $D \setminus E_n$, we have

$$\int_{D} f d\mu = \int_{E_{n}} f d\mu + \int_{D \setminus E_{n}} f d\mu$$

$$\leq \left(M - \frac{1}{n}\right) \mu(E_{n}) + M\mu(D \setminus E_{n}).$$

56CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

Since $E_n \subset D$, we have

$$\mu(D \setminus E_n) = \mu(D) - \mu(E_n).$$

Therefore,

$$\int_{D} f d\mu \leq \left(M - \frac{1}{n}\right) \mu(E_n) + M\mu(D) - M\mu(E_n)$$
$$= M\mu(D) - \frac{1}{n}\mu(E_n).$$

By assumption $\int_D f d\mu = M\mu(D)$, it follows that

$$0 \le -\frac{1}{n}\mu(E_n) \le 0, \ \forall n \in \mathbb{N},$$

which implies $\mu(E_n) = 0, \ \forall n \in \mathbb{N}.$

Now let $E = \bigcup_{n=1}^{\infty} E_n$ then $E = \{x \in D : f(x) < M\}$. We want to show that $\mu(E) = 0$. We have

$$0 \le \mu(E) \le \sum_{n=1}^{\infty} \mu(E_n) = 0.$$

Thus, $\mu(E) = 0$. Since $|f| \leq M$, the last result implies f = M a.e. on D.

(b) First we note that $|f| \leq M$ on D implies that $\int_D f d\mu \leq M\mu(D)$. Assume that $\int_D f d\mu = M\mu(D)$. By part (a) we have f = M a.e. on D. This contradicts the fact that f < M a.e. on D. Thus $\int_D f d\mu < M\mu(D)$.

Problem 48

Consider a sequence of functions $(f_n)_{n\in\mathbb{N}}$ defined on [0,1] by

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
 for $x \in [0, 1]$.

(a) Show that (f_n) is uniformly bounded on [0,1] and evaluate

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} \ d\mu.$$

(b) Show that (f_n) does not converge uniformly on [0,1].

Solution

(a) For all $n \in \mathbb{N}$, for all $x \in [0, 1]$, we have $1 + n^2 x^2 \ge 2nx \ge 0$ and $1 + n^2 x^2 > 0$, hence

$$0 \le f_n(x) = \frac{nx}{1 + n^2 x^2} \le \frac{1}{2}.$$

Thus, (f_n) is uniformly bounded on [0,1].

Since each f_n is continuous on [0,1], f is Riemann integrable on [0,1]. In this case, Lebesgue integral and Riemann integral on [0,1] coincide:

$$\int_{[0,1]} \frac{nx}{1+n^2x^2} d\mu = \int_0^1 \frac{nx}{1+n^2x^2} dx$$

$$= \frac{1}{2n} \int_1^{1+n^2} \frac{1}{t} dt \text{ (with } t = 1+n^2x^2)$$

$$= \frac{1}{2n} \ln(1+n^2) = \frac{\ln(1+n^2)}{2n}.$$

Using L'Hospital rule we get $\lim_{x\to\infty} \frac{\ln(1+x^2)}{2x} = 0$. Hence,

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} d\mu = 0.$$

(b) For each $x \in [0, 1]$,

$$\lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = 0.$$

Hence, $f_n \to f \equiv 0$ pointwise on [0,1]. To show f_n does not converge to $f \equiv 0$ uniformly on [0,1], we find a sequence (x_n) in [0,1] such that $x_n \to 0$ and $f_n(x_n) \not\to f(0) = 0$ as $n \to \infty$. Indeed, take $x_n = \frac{1}{n}$. Then $f_n(x) = \frac{1}{2}$. Thus,

$$\lim_{n \to \infty} f_n(x_n) = \frac{1}{2} \neq f(0) = 0. \quad \blacksquare$$

Problem 49

Let $(f_n)_{n\in\mathbb{N}}$ and f be extended real-valued measurable functions on $D\in\mathcal{M}_L$ with $\mu(D)<\infty$ and assume that f is real-valued a.e. on D. Show that $f_n\xrightarrow{\mu} f$ on D if and only if

$$\lim_{n \to \infty} \int_D \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0.$$

Solution

• Suppose $f_n \xrightarrow{\mu} f$ on D. By definition of convergence in measure, for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for $n \geq N$,

$$\exists E_n \subset D: \ \mu(E_n) < \frac{\varepsilon}{2} \ \text{ and } \ |f_n - f| < \frac{\varepsilon}{2\mu(D)} \ \text{ on } \ D \setminus E_n.$$

58CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

For n > N we have

$$(*) \quad \int_{D} \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu = \int_{E_n} \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu + \int_{D \setminus E_n} \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu.$$

Note that for all $n \in \mathbb{N}$, we have $0 \leq \frac{|f_n - f|}{1 + |f_n - f|} \leq 1$ on E_n and

$$0 \le \frac{|f_n - f|}{1 + |f_n - f|} = |f_n - f| \frac{1}{1 + |f_n - f|} \le |f_n - f| \le \frac{\varepsilon}{2\mu(D)}$$
 on $D \setminus E_n$.

So for $n \geq N$, we can write (*) as

$$0 \leq \int_{D} \frac{|f_{n} - f|}{1 + |f_{n} - f|} d\mu \leq \int_{E_{n}} 1 d\mu + \int_{D \setminus E_{n}} \frac{\varepsilon}{2\mu(D)} d\mu$$
$$= \mu(E_{n}) + \frac{\varepsilon}{2\mu(D)} \mu(D \setminus E_{n})$$
$$\leq \mu(E_{n}) + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, $\lim_{n\to\infty} \int_D \frac{|f_n - f|}{1 + |f_n - f|} \mu(dx) = 0.$

• Conversely, suppose $\lim_{n\to\infty} \int_D \frac{|f_n-f|}{1+|f_n-f|} d\mu = 0$. We show $f_n \xrightarrow{\mu} f$ on D. For any $\varepsilon > 0$, for $n \in \mathbb{N}$, let $E_n = \{x \in D : |f_n - f| \ge \varepsilon\}$. We have

$$|f_n - f| \ge \varepsilon \implies \frac{|f_n - f|}{1 + |f_n - f|} \ge \frac{\varepsilon}{1 + \varepsilon}$$

(since the function $\varphi(x) = \frac{x}{1+x}$, x > 0 is increasing). It follows that

$$0 \leq \int_{E_n} \frac{\varepsilon}{1+\varepsilon} \ d\mu \leq \int_{E_n} \frac{|f_n-f|}{1+|f_n-f|} d\mu \leq \int_D \frac{|f_n-f|}{1+|f_n-f|} d\mu.$$

Hence,

$$0 \le \frac{\varepsilon}{1+\varepsilon} \ \mu(E_n) \le \int_D \frac{|f_n - f|}{1 + |f_n - f|} d\mu.$$

Since $\lim_{n\to\infty} \int_D \frac{|f_n-f|}{1+|f_n-f|} d\mu = 0$, $\lim_{n\to\infty} \mu(E_n) = 0$. Thus, $f_n \xrightarrow{\mu} f$ on D.

Problem 50

Let (X, \mathcal{A}, μ) be a finite measure space. Let Φ be the set of all extended real-valued \mathcal{A} -measurable function on X where we identify functions that are equal a.e. on X. Let

$$\rho(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu \text{ for } f,g \in \Phi.$$

- (a) Show that ρ is a metric on Φ .
- (b) Show that Φ is complete w.r.t. the metric ρ .

Solution

- (a) Note that $\mu(X)$ is finite and $0 \le \frac{|f-g|}{1+|f-g|} < 1$, so $0 \le \rho < \infty$.
 - $\rho(f,g) = 0 \Leftrightarrow \int_X \frac{|f-g|}{1+|f-g|} d\mu = 0 \Leftrightarrow f-g = 0 \Leftrightarrow f = g$. (We identify functions that are equal a.e. on X.)
 - It is clear that $\rho(f,g) = \rho(g,f)$.
 - We make use the fact that the function $\varphi(x) = \frac{x}{1+x}, \ x > 0$ is increasing. For $f, g, h \in \Phi$,

$$\begin{split} \frac{|f-h|}{1+|f-h|} & \leq & \frac{|f-g|+|g-h|}{1+|f-g|+|g-h|} \\ & = & \frac{|f-g|}{1+|f-g|+|g-h|} + \frac{|g-h|}{1+|f-g|+|g-h|} \\ & \leq & \frac{|f-g|}{1+|f-g|} + \frac{|g-h|}{1+|g-h|}. \end{split}$$

Integrating over X we get

$$\int_X \frac{|f-h|}{1+|f-h|} \ d\mu \le \int_X \frac{|f-g|}{1+|f-g|} \ d\mu + \int_X \frac{|g-h|}{1+|g-h|} \ d\mu.$$

That is

$$\rho(f,g) \le \rho(f,h) + \rho(h,g).$$

Thus, ρ is a metric on Φ .

(b) Let (f_n) be a Cauchy sequence in Φ . We show that there exists an $f \in \Phi$ such that $\rho(f_n, f) \to 0$ as $n \to \infty$.

First we claim that (f_n) is a Cauchy sequence w.r.t. convergence in measure. Let $\eta > 0$. For $n, m \in \mathbb{N}$, define $A_{m,n} = \{X : |f_n - f_m| \ge \eta\}$. For every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$(*)$$
 $n, m \ge N \Rightarrow \rho(f_n, f_m) < \varepsilon \frac{\eta}{1+\eta}.$

60CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

While we have that

$$\rho(f_n, f_m) = \int_X \frac{|f_n - f_m|}{1 + |f_n - f_m|} d\mu \ge \int_{A_{m,n}} \frac{|f_n - f_m|}{1 + |f_n - f_m|} d\mu$$
$$\ge \frac{\eta}{1 + \eta} \mu(A_{m,n}).$$

For $n, m \geq N$, from (*) we get

$$\varepsilon \frac{\eta}{1+\eta} > \frac{\eta}{1+\eta} \ \mu(A_{m,n}).$$

This implies that $\mu(A_{m,n}) < \varepsilon$. Thus, (f_n) is Cauchy in measure. We know that if (f_n) is Cauchy in measure then (f_n) converges in measure to some $f \in \Phi$.

Next we prove that $\rho(f_n, f) \to 0$. Since $f_n \xrightarrow{\mu} f$, for any $\varepsilon > 0$ there exists $E \in \mathcal{A}$ and an $N \in \mathbb{N}$ such that

$$\mu(E) < \frac{\varepsilon}{2}$$
 and $|f_n - f| < \frac{\varepsilon}{2\mu(X)}$ on $X \setminus E$ whenever $n \ge N$.

On $X \setminus E$, for $n \geq N$, we have

$$\int_{X\setminus E} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \le \int_{X\setminus E} |f_n - f| d\mu < \frac{\varepsilon}{2\mu(X)} \mu(X\setminus E) \le \frac{\varepsilon}{2}.$$

On E, for all n, we have

$$\int_{E} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \le \int_{E} 1 d\mu = \mu(E) < \frac{\varepsilon}{2}.$$

Hence, for $n \geq N$, we have

$$\rho(f_n, f) = \int_X \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu = \int_E \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu + \int_{X \setminus E} \frac{|f_n - f|}{1 + |f_n - f|} \ d\mu < \varepsilon.$$

Thus, (f_n) converges to $f \in \Phi$. And hence, (Φ, ρ) is complete

Problem 51(Bounded convergence theorem under convergence in measure) Suppose that (f_n) is a uniformly bounded sequence of real-valued measurable functions on D, and f is a bounded real-valued measurable function on D. If $f_n \stackrel{w}{\to} f$ on D, then

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu = 0.$$

Solution

We will use this fact:

Let (a_n) be a sequence of real numbers. If there exists a real number a such that every subsequence (a_{n_k}) has a subsequence $(a_{n_{k_l}})$ converging to a, then the sequence (a_n) converges to a.

Consider the sequence of real numbers

$$a_n = \int_D |f_n - f| d\mu, \ n \in \mathbb{N}.$$

Take an arbitrary subsequence (a_{n_k}) . Consider the sequence (f_{n_k}) . Since (f_n) converges to f in measure on D, the subsequence (f_{n_k}) converges to f in measure on D too. By Riesz theorem, there exists a subsequence (f_{n_k}) converging to f a.e. on D. Thus by the bounded convergence theorem, we have

$$\lim_{n \to \infty} \int_D |f_{n_{k_l}} - f| d\mu = 0.$$

That is, the subsequence (a_{n_k}) of the arbitrary subsequence (a_{n_k}) of (a_n) converges to 0. Therefore the sequence (a_n) converges to 0. Thus

$$\lim_{n\to\infty} \int_D |f_n - f| d\mu = 0.$$

www.MATHVN.com - Anh Quang Le, PhD 62CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

Chapter 6

Integration of Nonnegative Functions

Definition 19 Let f be a nonnegative extended real-valued measurable function on a measurable $D \subset \mathbb{R}$. We define the Lebesgue integral of f on D by

$$\int_D f d\mu = \sup_{0 \le \varphi \le f} \varphi d\mu,$$

where the supremum is on the collection of all nonnegative simple function φ on D. If the integral is finite, we say that f is integrable on D.

Proposition 17 (Properties)

Let f, f_1 and f_2 be nonnegative extended real-valued measurable functions on D. Then

- 1. $\int_D f d\mu < \infty \Rightarrow f < \infty \text{ a.e. on } D.$
- 2. $\int_D f d\mu = 0 \Rightarrow f = 0$ a.e. on D.
- 3. $D_0 \subset D \Rightarrow \int_{D_0} f d\mu \leq \int_D f d\mu$.
- 4. f > 0 a.e. on D and $\int_D f d\mu = 0 \Rightarrow \mu(D) = 0$.
- 5. $f_1 \leq f_2$ on $D \Rightarrow \int_D f_1 d\mu \leq \int_D f_2 d\mu$.
- 6. $f_1 = f_2$ a.e. on $D \Rightarrow \int_D f_1 d\mu \leq \int_D f_2 d\mu$.

Theorem 6 (Monotone convergence theorem)

Let (f_n) be an increasing sequence of nonnegative extended real-valued measurable functions on D. If $f_n \to f$ on \overline{D} then

$$\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu.$$

Remark: The conclusion is not true for a decreasing sequence.

Proposition 18 Let (f_n) be an <u>increasing</u> sequence of nonnegative extended real-valued measurable functions on D. Then we have

$$\int_{D} \left(\sum_{n \in \mathbb{N}} f_n \right) d\mu = \sum_{n \in \mathbb{N}} \int_{D} f_n d\mu.$$

Theorem 7 (Fatou's Lemma)

Let (f_n) be a sequence of nonnegative extended real-valued measurable functions on D. Then we have

$$\int_{D} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{D} f_n d\mu.$$

In particular, if $\lim_{n\to\infty} f_n = f$ exists a.e. on D, then

$$\int_{D} f d\mu \le \liminf_{n \to \infty} \int_{D} f_n d\mu.$$

Proposition 19 (Uniform absolute continuity of the integral)

Let f be an integrable nonnegative extended real-valued measurable functions on D. Then for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\int_{E} f d\mu < \varepsilon$$

for every measurable $E \subset D$ with $\mu(E) < \delta$.

* * **

Problem 52

Let f_1 and f_2 be nonnegative extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Suppose $f_1 \leq f_2$ and f_1 is integrable on D. Prove that $f_2 - f_1$ is defined a.e. on D and

$$\int_{D} (f_2 - f_1) d\mu = \int_{D} f_2 d\mu - \int_{D} f_1 d\mu.$$

Solution

Since f_1 is integrable on D, f_1 is real-valued a.e. on D. Thus there exists a null set $N \subset D$ such that $0 \le f_1(x) < \infty$, $\forall x \in D \setminus N$. Then $f_2 - f_1$ is defined on $D \setminus N$. That is $f_2 - f_1$ is defined a.e. on D. On the other hand, since $f_2 = f_1 + (f_2 - f_1)$, we have

$$\int_{D} f_{2}d\mu = \int_{D} [f_{1} + (f_{2} - f_{1})] d\mu = \int_{D} f_{1}d\mu + \int_{D} (f_{2} - f_{1}) d\mu.$$

Since $\int_D f_1 d\mu < \infty$, we have

$$\int_{D} (f_2 - f_1) d\mu = \int_{D} f_2 d\mu - \int_{D} f_1 d\mu. \quad \blacksquare$$

Remark: If $\int_D f_1 d\mu = \infty$, $\int_D f_2 d\mu - \int_D f_1 d\mu$ may have the form $\infty - \infty$.

Problem 53

Let f be a non-negative real-valued measurable function on a measure space (X, \mathcal{A}, μ) . Suppose that $\int_E f d\mu = 0$ for every $E \in \mathcal{A}$. Show that f = 0 a.e.

Solution

Since $f \ge 0$, $A = \{x \in X : f(x) > 0\} = \{x \in X : f(x) \ne 0\}$. We shall show that $\mu(A) = 0$.

Let $A_n = \{x \in X : f(x) \ge \frac{1}{n}\}$ for every $n \in \mathbb{N}$. Then $A = \bigcup_{n \in \mathbb{N}} A_n$. Now on A_n we have

$$\begin{split} f &\geq \frac{1}{n} \quad \Rightarrow \quad \int_{A_n} f d\mu \geq \frac{1}{n} \ \mu(A_n) \\ &\Rightarrow \quad \mu(A_n) \leq n \int_{A_n} f d\mu = 0 \quad \text{(by assumption)} \\ &\Rightarrow \quad \mu(A_n) = 0 \quad \text{for every} \quad n \in \mathbb{N}. \end{split}$$

Thus, $0 \le \mu(A) \le \sum_{n \in \mathbb{N}} \mu(A_n) = 0$. Hence, $\mu(A) = 0$. This tells us that f = 0 a.e.

Problem 54

Let $(f_n : n \in \mathbb{N})$ be a sequence of non-negative real-valued measurable functions on \mathbb{R} such that $f_n \to f$ a.e. on \mathbb{R} .

Suppose $\lim_{n\to\infty}\int_{\mathbb{R}}f_nd\mu=\int_{\mathbb{R}}fd\mu<\infty$. Show that for each measurable set $E\subset\mathbb{R}$ we have

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

Solution

Since $g_n = f_n - f_n \chi_E \ge 0$, $n \in \mathbb{N}$ and $f_n \to f$ a.e., we have, by Fatou's lemma,

$$\int_{\mathbb{R}} \lim_{n \to \infty} g_n d\mu \leq \liminf_{n \to \infty} \int_{\mathbb{R}} g_n d\mu$$

$$\int_{\mathbb{R}} (f - f\chi_E) d\mu \leq \liminf_{n \to \infty} \int_{\mathbb{R}} (f_n - f_n \chi_E) d\mu$$

$$\int_{\mathbb{R}} f d\mu - \int_E f d\mu \leq \lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu - \limsup_{n \to \infty} \int_E f_n d\mu.$$

From the last inequation and assumption we get

(6.1)
$$\int_{E} f d\mu \ge \limsup_{n \to \infty} \int_{E} f_n d\mu.$$

Let $h_n = f_n - f_n \chi_E \ge 0$. Using the similar calculation, we obtain

(6.2)
$$\int_{E} f d\mu \le \liminf_{n \to \infty} \int_{E} f_n d\mu.$$

From (6.1) and (6.2) we have

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu. \quad \blacksquare$$

Problem 55

Given a measure space (X, \mathcal{A}, μ) . Let (f_n) and f be extended real-valued \mathcal{A} measurable functions on $D \in \mathcal{A}$ and assume that f is real-valued a.e. on D.

Suppose there exists a sequence of positive numbers (ε_n) such that

- 1. $\sum_{n\in\mathbb{N}} \varepsilon_n < \infty$.
- 2. $\int_D |f_n f|^p d\mu < \varepsilon_n \text{ for every } n \in \mathbb{N} \text{ for some fixed } p \in (0, \infty).$

Show that the sequence (f_n) converges to f a.e. on D. (Note that no integrability of f_n , f, $|f|^p$ on D is assumed).

Solution

Since $|f_n-f|^p$ is non-negative measurable for every $n \in \mathbb{N}$, the sequence $\left(\sum_{n=1}^N |f_n-f|^p\right)_{N\in\mathbb{N}}$ is an increasing sequence of non-negative measurable functions. By the Monotone Convergence Theorem, we have

$$\int_{D} \lim_{N \to \infty} \left(\sum_{n=1}^{N} |f_n - f|^p \right) d\mu = \lim_{N \to \infty} \int_{D} \sum_{n=1}^{N} |f_n - f|^p d\mu.$$

Using assumptions we get

$$\int_{D} \sum_{n=1}^{\infty} |f_{n} - f|^{p} d\mu = \lim_{N \to \infty} \sum_{n=1}^{N} \int_{D} |f_{n} - f|^{p} d\mu$$
$$= \sum_{n=1}^{\infty} \int_{D} |f_{n} - f|^{p} d\mu$$
$$\leq \sum_{n=1}^{\infty} \varepsilon_{n} < \infty.$$

This means that the function under the integral symbol in the left hand side is finite a.e. on D. We have

$$\sum_{n=1}^{\infty} |f_n - f|^p < \infty \quad a.e. \quad \text{on} \quad D \quad \Rightarrow \quad \lim_{n \to \infty} |f_n - f|^p = 0 \quad a.e. \quad \text{on} \quad D$$

$$\Rightarrow \quad \lim_{n \to \infty} |f_n - f| = 0 \quad a.e. \quad \text{on} \quad D$$

$$\Rightarrow \quad f_n \to f \quad a.e. \quad \text{on} \quad D. \quad \blacksquare.$$

Problem 56

Given a measure space (X, \mathcal{A}, μ) . Let (f_n) and f be extended real-valued measurable functions on $D \in \mathcal{A}$ and assume that f is real-valued a.e. on D. Suppose $\lim_{n\to\infty} \int_D |f_n - f|^p d\mu = 0$ for some fixed $p \in (0, \infty)$. Show that

$$f_n \xrightarrow{\mu} f$$
 on D .

Solution

Given any $\varepsilon > 0$. For every $n \in \mathbb{N}$, let $A_n = \{D : |f_n - f| \ge \varepsilon\}$. Then

$$\int_{D} |f_{n} - f|^{p} d\mu = \int_{A_{n}} |f_{n} - f|^{p} d\mu + \int_{D \setminus A_{n}} |f_{n} - f|^{p} d\mu$$

$$\geq \int_{A_{n}} |f_{n} - f|^{p} d\mu$$

$$\geq \varepsilon^{p} \mu(A_{n}).$$

Since $\lim_{n\to\infty} \int_D |f_n - f|^p d\mu = 0$, $\lim_{n\to\infty} \mu(A_n) = 0$. This means that

$$f_n \xrightarrow{\mu} f$$
 on D .

Problem 57

Let (X, \mathcal{A}, μ) be a measure space and let f be an extended real-valued \mathcal{A} measurable function on X such that $\int_X |f|^p d\mu < \infty$ for some fixed $p \in (0, \infty)$.

Show that

$$\lim_{\lambda \to \infty} \lambda^p \mu \{ X : |f| \ge \lambda \} = 0.$$

Solution

For n = 0, 1, 2, ..., let $E_n = \{D : n \le |f| < n + 1\}$. Then $E_n \in \mathcal{A}$ and the E_n 's are disjoint. Moreover, $X = \bigcup_{n=0}^{\infty} E_n$. We have

$$\infty > \int_X |f|^p d\mu = \sum_{n=0}^{\infty} \int_{E_n} |f|^p d\mu \ge \sum_{n=0}^{\infty} n^p \mu(E_n).$$

Since $\sum_{n=0}^{\infty} n^p \mu(E_n) < \infty$, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$ we have

$$\sum_{n=N}^{\infty} n^p \mu(E_n) < \varepsilon.$$

Note that $n^p \geq N^p$ since p > 0. So we have

$$N^p \sum_{n=N}^{\infty} \mu(E_n) < \varepsilon.$$

But $\bigcup_{n=N}^{\infty} E_n = \{X : |f| \ge N\}$. So with the above N, we have

$$N^p \mu \left(\bigcup_{n=N}^{\infty} E_n \right) = N^p \mu \{ X : |f| \ge N \} < \varepsilon.$$

Thus,

$$\lim_{\lambda \to \infty} \lambda^p \mu \{ X : |f| \ge \lambda \} = 0. \quad \blacksquare$$

Problem 58

Let (X, \mathcal{A}, μ) be a σ -finite measure space. Let f be an extended real-valued \mathcal{A} measurable function on X. Show that for every $p \in (0, \infty)$ we have

$$\int_{X} |f|^{p} d\mu = \int_{[0,\infty)} p\lambda^{p-1} \mu\{X : |f| > \lambda\} \mu_{L}(d\lambda). \quad (*)$$

Solution

We may suppose $f \ge 0$ (otherwise we set $g = |f| \ge 0$).

1. If $f = \chi_E$, $E \in \mathcal{A}$, then

$$\int_X f^p d\mu = \int_X (\chi_E)^p d\mu = \mu(E).$$

$$\int_{[0,\infty)} p\lambda^{p-1} \mu\{X : \chi_E > \lambda\} \mu_L(d\lambda) = \int_0^1 p\lambda^{p-1} \mu(E) d\lambda = \mu(E).$$

Thus, the equality (*) holds.

- 2. If $f = \sum_{i=1}^{n} a_i \chi_{E_i}$ (simple function), with $a_i \geq 0$, $E_i \in \mathcal{A}$, i = 1, ..., n., then the equality (*) holds because of the linearity of the integral.
- 3. If $f \geq 0$ measurable, then there is a sequence (φ_n) of non-negative measurable simple functions such that $\varphi_n \uparrow f$. By the Monotone Convergence Theorem we have

$$\begin{split} \int_X f^p d\mu &= \lim_{n \to \infty} \int_X \varphi_n^p d\mu \\ &= \lim_{n \to \infty} \int_{[0,\infty)} p\lambda^{p-1} \mu\{X: \ \varphi_n > \lambda\} \mu_L(d\lambda) \\ &= \int_{[0,\infty)} p\lambda^{p-1} \mu\{X: \ f > \lambda\} \mu_L(d\lambda). \quad \blacksquare \end{split}$$

Notes:

- 1. $A = \{X : \chi_E > \lambda\} = \{x \in X : \chi_E(x) > \lambda\}.$
 - If $0 \le \lambda < 1$ then A = E.
 - If $\lambda \geq 1$ then $A = \emptyset$.
- 2. Why σ -finite measure?

Problem 59

Given a measure space (X, \mathcal{A}, μ) . Let f be a non-negative extended real-valued \mathcal{A} -measurable function on $D \in \mathcal{A}$ with $\mu(D) < \infty$.

Let $D_n = \{x \in D : f(x) \ge n\}$ for $n \in \mathbb{N}$. Show that

$$\int_{D} f d\mu < \infty \iff \sum_{n \in \mathbb{N}} \mu(D_n) < \infty.$$

Solution

From the expression $D_n = \{x \in D : f(x) \ge n\}$ with f \mathcal{A} -measurable, we deduce that $D_n \in \mathcal{A}$ and

$$D := D_0 \supset D_1 \supset D_2 \supset \dots \supset D_n \supset D_{n+1} \supset \dots$$

Moreover, all the sets $D_n \setminus D_{n+1} = \{D : n \leq f < n+1, n \in \mathbb{N}\}$ are disjoint and

$$D = \bigcup_{n \in \mathbb{N}} (D_n \setminus D_{n+1}).$$

It follows that

$$n\mu(D_{n} \setminus D_{n+1}) \leq \int_{D_{n} \setminus D_{n+1}} f d\mu \leq (n+1)\mu(D_{n} \setminus D_{n+1})$$

$$\sum_{n=0}^{\infty} n\mu(D_{n} \setminus D_{n+1}) \leq \int_{\bigcup_{n \in \mathbb{N}} (D_{n} \setminus D_{n+1})} f d\mu \leq \sum_{n=0}^{\infty} (n+1)\mu(D_{n} \setminus D_{n+1})$$

$$\sum_{n=0}^{\infty} n\mu[(D_{n}) - \mu(D_{n+1})] \leq \int_{D} f d\mu \leq \sum_{n=0}^{\infty} (n+1)[\mu(D_{n}) - \mu(D_{n+1})]. \quad (i)$$

Some more calculations:

$$\sum_{n=0}^{\infty} n\mu[(D_n) - \mu(D_{n+1})] = 1[\mu(D_1) - \mu(D_2)] + 2[\mu(D_2) - \mu(D_3)] + \dots$$
$$= \sum_{n=1}^{\infty} \mu(D_n),$$

and

$$\sum_{n=0}^{\infty} (n+1)[\mu(D_n) - \mu(D_{n+1})] = 1[\mu(D_0) - \mu(D_1)] + 2[\mu(D_1) - \mu(D_2)] + \dots$$
$$= \mu(D) + \sum_{n=1}^{\infty} \mu(D_n).$$

With these, we rewrite (i) as follows

$$\sum_{n=1}^{\infty} \mu(D_n) \le \int_D f d\mu \le \mu(D) + \sum_{n=1}^{\infty} \mu(D_n).$$

Since $\mu(D) < \infty$, we have

$$\int_{D} f d\mu < \infty \iff \sum_{n \in \mathbb{N}} \mu(D_n) < \infty. \quad \blacksquare$$

Problem 60

Given a measure space (X, \mathcal{A}, μ) with $\mu(X) < \infty$. Let f be a non-negative extended real-valued \mathcal{A} -measurable function on X. Show that f is μ -integrable on X if and only if

$$\sum_{n=0}^{\infty} 2^n \mu \{ x \in X : \ f(x) > 2^n \} < \infty.$$

Solution

Let $E_n = \{X : f > 2^n\}$ for each n = 0, 1, 2, ... Then it is clear that

$$E_0 \supset E_1 \supset \dots \supset E_n \supset E_{n+1} \supset \dots$$

$$E_n \setminus E_{n+1} = \{X : 2^n < f \le 2^{n+1}\} \text{ and are disjoint } X \setminus E_0 = \{X : 0 \le f \le 1\}$$

$$X = (X \setminus E_0) \cup \bigcup_{n=0}^{\infty} (E_n \setminus E_{n+1}).$$

Now we have

$$\int_{X} f d\mu = \int_{X \setminus E_{0}} f d\mu + \int_{\bigcup_{n=0}^{\infty} (E_{n} \setminus E_{n+1})} f d\mu
= \int_{X \setminus E_{0}} f d\mu + \sum_{n=0}^{\infty} \int_{E_{n} \setminus E_{n+1}} f d\mu.$$

This implies that

(6.3)
$$\sum_{n=0}^{\infty} \int_{E_n \setminus E_{n+1}} f d\mu = \int_X f d\mu - \int_{X \setminus E_0} f d\mu.$$

On the other hand, for n = 0, 1, 2, ..., we have

$$2^{n}\mu(E_{n}\setminus E_{n+1}) \le \int_{E_{n}\setminus E_{n+1}} f d\mu \le 2^{n+1}\mu(E_{n}\setminus E_{n+1}).$$

Therefore,

$$\sum_{n=0}^{\infty} 2^n \mu(E_n \setminus E_{n+1}) \le \sum_{n=0}^{\infty} \int_{E_n \setminus E_{n+1}} f d\mu \le \sum_{n=0}^{\infty} 2^{n+1} \mu(E_n \setminus E_{n+1}).$$

From (6.3) we obtain

$$\sum_{n=0}^{\infty} 2^{n} \mu(E_n \setminus E_{n+1}) + \int_{X \setminus E_0} f d\mu \le \int_X f d\mu \le \sum_{n=0}^{\infty} 2^{n+1} \mu(E_n \setminus E_{n+1}) + \int_{X \setminus E_0} f d\mu.$$

Since

$$0 \le \int_{X \setminus E_0} f d\mu \le \mu(X \setminus E_0) \le \mu(X) < \infty,$$

we get

(6.4)
$$\sum_{n=0}^{\infty} 2^n \mu(E_n \setminus E_{n+1}) \le \int_X f d\mu \le \sum_{n=0}^{\infty} 2^{n+1} \mu(E_n \setminus E_{n+1}) + \mu(X).$$

Some more calculations:

$$\sum_{n=0}^{\infty} 2^{n} \mu(E_{n} \setminus E_{n+1}) = \sum_{n=0}^{\infty} 2^{n} [\mu(E_{n}) - \mu(E_{n+1})]$$

$$= \mu(E_{0}) - \mu(E_{1}) + 2[\mu(E_{1}) - \mu(E_{2})] + 4[\mu(E_{2}) - \mu(E_{3})] + \dots$$

$$= \mu(E_{0}) + \mu(E_{1}) + 2\mu(E_{2}) + 4\mu(E_{3}) + \dots$$

$$= \frac{1}{2} \mu(E_{0}) + \frac{1}{2} \sum_{n=0}^{\infty} 2^{n} \mu(E_{n}),$$

and

$$\sum_{n=0}^{\infty} 2^{n+1} \mu(E_n \setminus E_{n+1}) = \sum_{n=0}^{\infty} 2^{n+1} [\mu(E_n) - \mu(E_{n+1})]$$

$$= 2[\mu(E_0) - \mu(E_1)] + 4[\mu(E_1) - \mu(E_2)] + 8[\mu(E_2) - \mu(E_3)] + \dots$$

$$= \mu(E_0) + [\mu(E_0) + 2\mu(E_1) + 4\mu(E_2) + 8\mu(E_3) + \dots]$$

$$= \mu(E_0) + \sum_{n=0}^{\infty} 2^n \mu(E_n).$$

With these, we rewrite (6.4) as follows

$$\frac{1}{2}\mu(E_0) + \frac{1}{2}\sum_{n=0}^{\infty} 2^n \mu(E_n) \le \int_X f d\mu \le \mu(E_0) + \sum_{n=0}^{\infty} 2^n \mu(E_n) + \mu(X).$$

This implies that

$$\frac{1}{2} \sum_{n=0}^{\infty} 2^n \mu(E_n) \le \int_X f d\mu \le \sum_{n=0}^{\infty} 2^n \mu(E_n) + 2\mu(X).$$

Since $\mu(X) < \infty$, we have

$$\int_X f d\mu < \infty \iff \sum_{n=0}^\infty 2^n \mu \{x \in X : f(x) > 2^n\} < \infty. \quad \blacksquare$$

Problem 61

(a) Let $\{c_{n,i}: n, i \in \mathbb{N}\}$ be an array of non-negative extended real numbers. Show that

$$\liminf_{n \to \infty} \sum_{i \in \mathbb{N}} c_{n,i} \ge \sum_{i \in \mathbb{N}} \liminf_{n \to \infty} c_{n,i}.$$

(b) Show that if $(c_{n,i}: n \in \mathbb{N})$ is an increasing sequence for each $i \in \mathbb{N}$, then

$$\lim_{n \to \infty} \sum_{i \in \mathbb{N}} c_{n,i} = \sum_{i \in \mathbb{N}} \lim_{n \to \infty} c_{n,i}.$$

Solution

(a) Let $\nu : \mathbb{N} \to [0, \infty]$ denote the counting measure. Consider the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$. It is a measure space in which every $A \subset \mathbb{N}$ is measurable. Let $i \mapsto b(i)$ be any function on \mathbb{N} . Then

$$\int_{\mathbb{N}} b d\nu = \sum_{i \in \mathbb{N}} b(i).$$

For the array $\{c_{n,i}\}$, for each $i \in \mathbb{N}$, we can write $c_{n,i} = c_n(i)$, $n \in \mathbb{N}$. Then c_n is a non-negative ν -measurable function defined on \mathbb{N} . By Fatou's lemma,

$$\int_{\mathbb{N}} \liminf_{n \to \infty} c_n d\nu \le \liminf_{n \to \infty} \int_{\mathbb{N}} c_n d\nu,$$

that is

$$\sum_{i \in \mathbb{N}} \liminf_{n \to \infty} c_{n,i} \le \liminf_{n \to \infty} \sum_{i \in \mathbb{N}} c_{n,i}.$$

(b) If $(c_{n,i}: n \in \mathbb{N})$ is an increasing sequence for each $i \in \mathbb{N}$, then the sequence of functions (c_n) is non-negative increasing. By the Monotone Convergence Theorem we have

$$\lim_{n \to \infty} \int_{\mathbb{N}} c_n(i) d\nu = \int_{\mathbb{N}} \lim_{n \to \infty} c_n(i) d\nu,$$

that is

$$\lim_{n \to \infty} \sum_{i \in \mathbb{N}} c_{n,i} = \sum_{i \in \mathbb{N}} \lim_{n \to \infty} c_{n,i}. \quad \blacksquare$$

74 CHAPTER 6. INTEGRATION OF NONNEGATIVE FUNCTIONS

Chapter 7

Integration of Measurable Functions

Given a measure space (X, \mathcal{A}, μ) . Let f be a measurable function on a set $D \in \mathcal{A}$. We define the positive and negative parts of f by

$$f^+ := \max\{f, 0\}$$
 and $f^- := \max\{-f, 0\}$.

Then we have

$$f = f^+ - f^-$$
 and $|f| = f^+ + f^-$.

Definition 20 Let f be an extended real-valued measurable function on D. The function f is said to be integrable on D if f^+ and f^- are both integrable on D. In this case we define

$$\int_D f d\mu = \int_D f^+ d\mu - \int_D f^- d\mu.$$

Proposition 20 (Properties)

- 1. f is integrable on D if and only if |f| is integrable on D.
- 2. If f is integrable on D then cf is integrable on D, and we have $\int_D cf d\mu = c \int_D f d\mu$, where c is a constant in \mathbb{R} .
- 3. If f and g are integrable on D then f+g are integrable on D, and we have $\int_D (f+g)d\mu = \int_D f d\mu + \int_D g d\mu$.
- 4. $f \leq g \Rightarrow \int_D f d\mu \leq \int_D g d\mu$.
- 5. If f is integrable on D then $|f| < \infty$ a.e. on D, that is, f is real-valued a.e. on D.
- 6. If $\{D_1, ..., D_n\}$ is a disjoint collection in A, then

$$\int_{\bigcup_{i=1}^n D_i} f d\mu = \sum_{i=1}^n \int_{D_i} f d\mu.$$

www.MathVn.com⁷⁵- Math Vietnam

Theorem 8 (generalized monotone convergence theorem)

Let (f_n) be a sequence of integrable extended real-valued functions on D.

1. If (f_n) is increasing and there is a extended real-valued measurable function g such that $f_n \geq g$ for every $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} f_n d\mu = \int_D g d\mu.$$

2. If (f_n) is decreasing and there is a extended real-valued measurable function g such that $f_n \leq g$ for every $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} f_n d\mu = \int_D g d\mu.$$

Theorem 9 (Lebesgue dominated convergence theorem theorem - D.C.T)

Let (f_n) be a sequence of integrable extended real-valued functions on D and g be an integrable nonnegative extended real-valued function on D such that $|f_n| \leq g$ on D for every $n \in \mathbb{N}$. If $\lim_{n\to\infty} f_n = f$ exists a.e. on D, then f is integrable on D and

$$\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu \quad and \quad \lim_{n\to\infty} \int_D |f_n - f| d\mu = 0.$$

* * **

Problem 62

Prove this statement:

Let f be extended real-valued measurable function on a measurable set D. If f is integrable on D, then the set $\{D: f \neq 0\}$ is a σ -finite set.

Solution

For every $n \in \mathbb{N}$ set

$$D_n = \left\{ x \in D : |f(x)| \ge \frac{1}{n} \right\}.$$

Then we have

$$\{x \in D : f(x) \neq 0\} = \{x \in D : |f(x)| > 0\} = \bigcup_{n \in \mathbb{N}} D_n.$$

Now for each $n \in \mathbb{N}$ we have

$$\frac{1}{n}\mu(D_n) \le \int_{D_n} |f| d\mu \le \int_D |f| d\mu < \infty.$$

Thus

$$\mu(D_n) = \mu < \infty, \ \forall n \in \mathbb{N},$$

that is, the set $\{x \in D : f(x) \neq 0\}$ is σ -finite.

Problem 63

Let f be extended real-valued measurable function on a measurable set D. If (E_n) is an increasing sequence of measurable sets such that $\lim_{n\to\infty} E_n = D$, then

$$\int_{D} f d\mu = \lim_{n \to \infty} \int_{E_n} f d\mu.$$

Solution

Since (E_n) is an increasing sequence with limit D, so by definition, we have

$$D = \bigcup_{n=1}^{\infty} E_n.$$

Let

$$D_1 = E_1$$
 and $D_n = E_n \setminus E_{n+1}$, $n \ge 2$.

Then $\{D_1, D_2, ...\}$ is a disjoint collection of measurable sets, and we have

$$\bigcup_{i=1}^{n} D_i = E_n \text{ and } \bigcup_{n=1}^{\infty} D_n = \bigcup_{n=1}^{\infty} E_n = D.$$

Hence

$$\int_{D} f d\mu = \sum_{n=1}^{\infty} \int_{D_{n}} f d\mu = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{D_{i}} f d\mu$$

$$= \lim_{n \to \infty} \int_{\bigcup_{i=1}^{n} D_{i}} f d\mu = \lim_{n \to \infty} \int_{E_{n}} f d\mu. \quad \blacksquare$$

Problem 64

Let (X, \mathcal{A}, μ) be a measure space. Let f and g be extended real-valued measurable functions on X. Suppose that f and g are integrable on X and $\int_E f d\mu = \int_E g d\mu$ for every $E \in \mathcal{A}$. Show that f = g a.e. on X.

Solution

• Case 1: f and g are two real-valued integrable functions on X. Assume that the statement f = g a.e. on X is false. Then at least one of the two sets $E = \{X : f < g\}$ and $F = \{X : f > g\}$ has a positive measure. Consider the case $\mu(E) > 0$. Now since both f and g are real-valued, we have

$$E = \bigcup_{k \in \mathbb{N}} E_k$$
 where $E_k = E = \left\{ X : g - f \ge \frac{1}{k} \right\}$.

Then $0 < \mu(E) \le \sum_{k \in \mathbb{N}} \mu(E_k)$. Thus there exists $k_0 \in \mathbb{N}$ such that $\mu(E_{k_0}) > 0$, so that

$$\int_{E_{k_0}} (g - f) d\mu \ge \frac{1}{k_0} \mu(E_{k_0}) > 0.$$

Therefore

$$\int_{E_{k_0}} g d\mu \ge \int_{E_{k_0}} f d\mu + \frac{1}{k_0} \mu(E_{k_0}) > \int_{E_{k_0}} f d\mu.$$

This is a contradiction. Thus $\mu(E) = 0$. Similarly, $\mu(F) = 0$. This shows that f = g a.e. on X.

• Case 2: General case, where f and g are two extended real-valued integrable functions on X. The integrability of f and g implies that f and g are real-valued a.e. on X. Thus there exists a null set $N \subset X$ such that f and g are real-valued on $X \setminus N$. Set

$$\bar{f} = \begin{cases} f & \text{on } X \setminus N, \\ 0 & \text{on } N. \end{cases}$$
 and $\bar{g} = \begin{cases} g & \text{on } X \setminus N, \\ 0 & \text{on } N. \end{cases}$

Then \bar{f} and \bar{g} are real-valued on X, and so on every $E \in \mathcal{A}$ we have

$$\int_{E} \bar{f} d\mu = \int_{E} f d\mu = \int_{E} \bar{g} d\mu = \int_{E} g d\mu.$$

By the first part of the proof, we have $\bar{f} = \bar{g}$ a.e. on X. Since $\bar{f} = f$ a.e. on X and $\bar{g} = g$ a.e. on X, we deduce that

$$f = g$$
 a.e. on X .

Problem 65

Let (X, \mathcal{A}, μ) be a σ -finite measure space and let f, g be extended real-valued measurable functions on X. Show that if $\int_E f d\mu = \int_E g d\mu$ for every $E \in \mathcal{A}$ then f = g a.e. on X. (Note that the integrability of f and g is not assumed.)

Solution

The space (X, \mathcal{A}, μ) is σ -finite:

$$X = \bigcup_{n \in \mathbb{N}} X_n, \ \mu(X_n) < \infty, \ \forall n \in \mathbb{N} \ \text{and} \ \{X_n : n \in \mathbb{N}\} \ \text{are disjoint.}$$

To show f = g a.e. on X it suffices to show f = g a.e. on each X_n (since countable union of null sets is a null set).

Assume that the conclusion is false, that is if $E = \{X_n : f < g\}$ and $F = \{X_n : f > g\}$ then at least one of the two sets has a positive measure. Without lost of generality, we may assume $\mu(E) > 0$.

Now, E is composed of three disjoint sets:

$$E^{(1)} = \{X_n : -\infty < f < g < \infty\},\$$

$$E^{(2)} = \{X_n : -\infty < f < g = \infty\},\$$

$$E^{(3)} = \{X_n : -\infty = f < g < \infty\}.$$

Since $\mu(E) > 0$, at least one of these sets has a positive measure.

1.
$$\mu(E^{(1)}) > 0$$
. Let

$$E_{m,k,l}^{(1)} = \{X_n : -m \le f ; f + \frac{1}{k} \le g ; g \le l\}.$$

Then

$$E^{(1)} = \bigcup_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} E_{m,k,l}^{(1)}.$$

By assumption and the subadditivity of μ we have

$$0 < \mu(E^{(1)} \le \sum_{m,k,l \in \mathbb{N}} \mu(E^{(1)}_{m,k,l}).$$

This implies that there are some $m_0, k_0, l_0 \in \mathbb{N}$ such that

$$\mu(E_{m_0,k_0,l_0}) > 0.$$

Let $E^* = E_{m_0,k_0,l_0}$ then we have

$$\int_{E^*} (g - f) d\mu \ge \frac{1}{k_0} \mu(E^*) > 0 \text{ so } \int_{E^*} g d\mu > \int_{E^*} f d\mu.$$

This is a contradiction.

80

2.
$$\mu(E^{(2)}) > 0$$
. Let

$$E_l^{(2)} = \{ X_n : -\infty < f \le l; \ g = \infty \}.$$

Then

$$E^{(2)} = \bigcup_{l \in \mathbb{N}} E_l^{(2)}.$$

By assumption and the subadditivity of μ we have

$$0 < \mu(E^{(2)}) \le \sum_{l \in \mathbb{N}} \mu(E_l^{(2)}).$$

This implies that there is some $l_0 \in \mathbb{N}$ such that

$$\mu(E_{l_0}^{(2)}) > 0.$$

Let $E^{**} = E_{l_0}^{(2)}$. Then

$$\int_{E^{**}} g d\mu = \infty > \int_{E^{**}} f d\mu.$$

This contradicts the assumption that $\int_E f d\mu = \int_E g d\mu$ for every $E \in \mathcal{A}$.

3. $\mu(E^{(3)}) > 0$. Let

$$E_m^{(2)} = \{X_n : -\infty = f; -m \le g < \infty\}.$$

Then

$$E^{(3)} = \bigcup_{m \in \mathbb{N}} E_m^{(3)}.$$

By assumption and the subadditivity of μ we have

$$0 < \mu(E^{(3)}) \le \sum_{m \in \mathbb{N}} \mu(E_m^{(3)}).$$

This implies that there is some $m_0 \in \mathbb{N}$ such that

$$\mu(E_{m_0}^{(3)}) > 0.$$

Let $E^{***} = E_{m_0}^{(3)}$. Then

$$\int_{E^{***}} g d\mu \ge -m\mu(E^{***}) > -\infty = \int_{E^{***}} f d\mu :$$

This contradicts the assumption.

Thus, $\mu(E) = 0$. Similarly, we get $\mu(F) = 0$. That is f = g a.e. on X.

Problem 66

Given a measure space (X, \mathcal{A}, μ) . Let f be extended real-valued measurable and integrable function on X.

1. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $A \in \mathcal{A}$ with $\mu(A) < \delta$ then

$$\left| \int_A f d\mu \right| < \varepsilon.$$

2. Let (E_n) be a sequence in \mathcal{A} such that $\lim_{n\to\infty}\mu(E_n)=0$. Show that $\lim_{n\to\infty}\int_{E_n}fd\mu=0$.

Solution

1. For every $n \in \mathbb{N}$, set

$$f_n(x) = \begin{cases} f(x) & \text{if } f(x) \le n \\ n & \text{otherwise.} \end{cases}$$

Then the sequence (f_n) is increasing. Each f_n is bounded and $f_n \to f$ pointwise. By the Monotone Convergence Theorem,

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \left| \int_X f_N d\mu - \int_X f d\mu \right| < \frac{\varepsilon}{2}.$$

Take $\delta = \frac{\varepsilon}{2N}$. If $\mu(A) < \delta$, we have

$$\left| \int_{A} f d\mu \right| \leq \left| \int_{A} (f_{N} - f) d\mu \right| + \left| \int_{A} f_{N} d\mu \right|$$

$$\leq \left| \int_{X} (f_{N} - f) d\mu \right| + N\mu(A)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2\delta} \delta = \varepsilon.$$

2. Since $\lim_{n\to\infty} \mu(E_n) = 0$, with ε and δ as above, there exists $n_0 \in \mathbb{N}$ such that for $n \geq n_0$, $\mu(E_n) < \delta$. Then we have

$$\left| \int_{E_n} f d\mu \right| < \varepsilon.$$

This shows that $\lim_{n\to\infty} \int_{E_n} f d\mu = 0$.

Problem 67

Given a measure space (X, \mathcal{A}, μ) . Let f be extended real-valued \mathcal{A} -measurable and integrable function on X. Let $E_n = \{x \in X : |f(x)| \ge n\}$ for $n \in \mathbb{N}$. Show that $\lim_{n\to\infty} \mu(E_n) = 0$.

Solution

First we note that $X = E_0$. For each $n \in \mathbb{N}$, we have

$$E_n \setminus E_{n+1} = \{X : n \le |f| < n+1\}.$$

Moreover, the collection $\{E_n \setminus E_{n+1} : n \in \mathbb{N}\} \subset \mathcal{A}$ consists of measurable disjoint sets and

$$\bigcup_{n=0}^{\infty} (E_n \setminus E_{n+1}) = X.$$

By the integrability of f we have

$$\infty > \int_X |f| d\mu = \sum_{n=0}^{\infty} \int_{E_n \setminus E_{n+1}} |f| d\mu \ge \sum_{n=0}^{\infty} n\mu(E_n \setminus E_{n+1}).$$

Some more calculations for the last summation:

$$\sum_{n=0}^{\infty} n\mu(E_n \setminus E_{n+1}) = \sum_{n=0}^{\infty} n[\mu(E_n) - \mu(E_{n+1})]$$

$$= \mu(E_1) - \mu(E_2) + 2[\mu(E_2) - \mu(E_3)] + 3[\mu(E_3) - \mu(E_4)] + \dots$$

$$= \sum_{n=1}^{\infty} \mu(E_n) < \infty.$$

Since the series $\sum_{n=1}^{\infty} \mu(E_n)$ converges, $\lim_{n\to\infty} \mu(E_n) = 0$.

Problem 68

Let (X, \mathcal{A}, μ) be a measure space.

- (a) Let $\{E_n : n \in \mathbb{N}\}$ be a disjoint collection in \mathcal{A} . Let f be an extended real-valued \mathcal{A} -measurable function defined on $\bigcup_{n \in \mathbb{N}} E_n$. If f is integrable on E_n for every $n \in \mathbb{N}$, does $\int_{\bigcup_{n \in \mathbb{N}} E_n} f d\mu$ exist?
- (b) Let $(F_n: n \in \mathbb{N})$ be an increasing sequence in A. Let f be an extended real-valued A-measurable function defined on $\bigcup_{n \in \mathbb{N}} F_n$. Suppose f is integrable on E_n for every $n \in \mathbb{N}$ and moreover $\lim_{n \to \infty} \int_{F_n} f d\mu$ exists in \mathbb{R} . Does $\int_{\bigcup_{n \in \mathbb{N}} F_n} f d\mu$ exist?

Solution

(a) NO.

$$X = [1, \infty), \quad E_n = [n, n+1), \quad n = 1, 2, ..., \{E_n\} \quad \text{disjoint.}$$

$$\mathcal{A} = \mathcal{M}_L, \quad \mu_L.$$

$$X = \bigcup_{n \in \mathbb{N}} E_n, \quad f(x) = 1, \quad \forall x \in X.$$

$$\int_{E_n} f d\mu = 1, \quad \forall n \in \mathbb{N}, \quad \int_{\bigcup_{n \in \mathbb{N}} E_n} f d\mu = \int_{[1, \infty)} 1 d\mu = \infty.$$

(b) NO.

$$X = \mathbb{R}, \quad F_n = (-n, n), \quad n = 1, 2, ..., \quad (F_n : n \in \mathbb{N}) \text{ increasing}$$
 $\mathcal{A} = \mathcal{M}_L, \quad \mu_L.$

$$X = \bigcup_{n \in \mathbb{N}} F_n, \quad f(x) = 1 \text{ for } x \ge 0, \quad f(x) = -1 \text{ for } x < 0$$

$$\int_{F_n} f d\mu = \int_{(-n,0)} (-1) d\mu + \int_{[0,n)} 1 d\mu = 0 \implies \lim_{n \to \infty} \int_{F_n} f d\mu = 0$$

$$\int_{\mathbb{N}} \int_{\mathbb{R}} f d\mu = \int_{\mathbb{R}} f d\mu = \int_{(-\infty,0)} (-1) d\mu + \int_{(0,\infty)} 1 d\mu \text{ does not exist.} \quad \blacksquare$$

Problem 69

Let f is a real-valued uniformly continuous function on $[0,\infty)$. Show that if f is Lebesgue integrable on $[0,\infty)$, then

$$\lim_{x \to \infty} f(x) = 0.$$

Solution

Suppose NOT. Then there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$, there is $x_n > n$ such that $|f(x_n)| \ge \varepsilon$. W.L.O.G. we may choose (x_n) such that

$$x_{n+1} > x_n + 1$$
 for all $n \in \mathbb{N}$.

Since f is uniformly continuous on $[0, \infty)$, with the above ε ,

$$\exists \delta \in (0, \frac{1}{2}): |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

In particular, for $x \in I_n = (x_n - \delta, x_n + \delta)$, we have

$$|f(x_n) - f(x)| < \frac{\varepsilon}{2}, \quad \forall n \in \mathbb{N}.$$

This implies

$$|f(x_n)| - |f(x)| < \frac{\varepsilon}{2} \implies |f(x)| > |f(x_n)| - \frac{\varepsilon}{2} \ge \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}.$$

Since $x_{n+1} - x_n > 1$ and $0 < \delta < \frac{1}{2}$, $I_n \cap I_{n+1} = \emptyset$. Moreover, $\bigcup_{n=1}^{\infty} I_n \subset [0, \infty)$. By assumption, f is integrable on $[0, \infty)$, so we have

$$\infty > \int_{[0,\infty)} f d\mu \ge \sum_{n=1}^{\infty} \int_{I_n} f d\mu > \sum_{n=1}^{\infty} \int_{I_n} \frac{\varepsilon}{2} d\mu = \infty.$$

This is a contradiction. Thus,

$$\lim_{x \to \infty} f(x) = 0. \quad \blacksquare$$

Problem 70

Let (X, \mathcal{A}, μ) be a measure space and let $(f_n)_{n \in \mathbb{N}}$, and f, g be extended real-valued \mathcal{A} -measurable and integrable functions on $D \in \mathcal{A}$. Suppose that

- 1. $\lim_{n\to\infty} f_n = f$ a.e. on D.
- 2. $\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu$.
- 3. either $f_n \geq g$ on D for all $n \in \mathbb{N}$ or $f_n \leq g$ on D for all $n \in \mathbb{N}$.

Show that, for every $E \in \mathcal{A}$ and $E \subset D$, we have

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

Solution

(a) First we solve the problem in the case the condition 3. is replaced by $f_n \geq 0$ on D for all $n \in \mathbb{N}$.

Let $h_n = f_n - f_n \chi_E$ for every $E \in \mathcal{A}$ and $E \subset D$. Then $h_n \geq 0$ and \mathcal{A} -measurable

and integrable on D. Applying Fatou's lemma to h_n and using assumptions, we get

$$\int_{D} f d\mu - \int_{E} f d\mu = \int_{D} (f - f \chi_{E}) d\mu \leq \liminf_{n \to \infty} \int_{D} (f_{n} - f_{n} \chi_{E}) d\mu$$

$$= \lim_{n \to \infty} \int_{D} f_{n} d\mu - \limsup_{n \to \infty} \int_{D} f_{n} \chi_{E} d\mu$$

$$= \int_{D} f d\mu - \limsup_{n \to \infty} \int_{E} f_{n} d\mu.$$

Since f is integrable on D, $\int_D f d\mu < \infty$. From the last inequality we obtain,

$$(*) \quad \limsup_{n \to \infty} \int_E f_n d\mu \le \int_E f d\mu.$$

Let $k_n = f_n + f_n \chi_E$ for every $E \in \mathfrak{A}$ and $E \subset D$. Using the same way as in the previous paragraph, we get

$$(**) \qquad \int_{E} f d\mu \le \liminf_{n \to \infty} \int_{E} f_n d\mu.$$

From (*) and (**) we get

$$\lim_{n\to\infty}\int_E f_n d\mu = \int_E f d\mu. \quad \blacksquare$$

Next we are coming back to the problem. Assume $f_n \geq g$ on D for all $n \in \mathbb{N}$. Let $\varphi_n = f_n - g$. Using the above result for $\varphi_n \geq 0$ we get

$$\lim_{n \to \infty} \int_E \varphi_n d\mu = \int_E \varphi d\mu.$$

That is

$$\lim_{n \to \infty} \int_E (f_n - g) d\mu = \int_E (f - g) d\mu$$
$$\lim_{n \to \infty} \int_E f_n d\mu - \int_E g d\mu = \int_E f d\mu - \int_E g d\mu.$$

Since g is integrable on E, $\int_E g d\mu < \infty$. Thus, we have

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu. \quad \blacksquare$$

Problem 71(An extension of the Dominated Convergence Theorem) Let (X, \mathcal{A}, μ) be a measure space and let $(f_n)_{n \in \mathbb{N}}$, $(g_n)_{n \in \mathbb{N}}$, and f, g be extended real-valued \mathcal{A} -measurable functions on $D \in \mathcal{A}$. Suppose that

- 1. $\lim_{n\to\infty} f_n = f$ and $\lim_{n\to\infty} g_n = g$ a.e. on D.
- 2. (g_n) and g are all integrable on D and $\lim_{n\to\infty}\int_D g_n d\mu = \int_D g d\mu$.
- 3. $|f_n| \leq g_n$ on D for every $n \in \mathbb{N}$.

Prove that f is integrable on D and $\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu$.

Solution

Consider the sequence $(g_n - f_n)$. Since $|f_n| \le g_n$, and (f_n) and (g_n) are sequences of measurable functions, the sequence $(g_n - f_n)$ consists of non-negative measurable functions. Using the Fatou's lemma we have

$$\int_{D} \liminf_{n \to \infty} (g_n - f_n) d\mu \le \liminf_{n \to \infty} \int_{D} (g_n - f_n) d\mu$$

$$\int_{D} \lim_{n \to \infty} (g_n - f_n) d\mu \le \lim_{n \to \infty} \int_{D} g_n d\mu - \limsup_{n \to \infty} \int_{D} f_n d\mu$$

$$\int_{D} g d\mu - \int_{D} f d\mu \le \int_{D} g d\mu - \limsup_{n \to \infty} \int_{D} f_n d\mu$$

$$\int_{D} f d\mu \ge \limsup_{n \to \infty} \int_{D} f_n d\mu. \quad (*) \quad (\text{since } \int_{D} g d\mu < \infty).$$

Using the same process for the sequence $(g_n + f_n)$, we have

$$\int_{D} f d\mu \le \liminf_{n \to \infty} \int_{D} f_n d\mu. \quad (**).$$

From (*) and (**) we obtain

$$\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu.$$

The fact that f is integrable comes from g_n is integrable:

$$|f_n| \le g_n \quad \Rightarrow \quad \int_D f_n d\mu \le \int_D g_n d\mu < \infty$$

 $\Rightarrow \quad \int_D f d\mu < \infty. \quad \blacksquare$

Problem 72

Given a measure space (X, \mathcal{A}, μ) . Let $(f_n)_{n \in \mathbb{N}}$ and f be extended real-valued A-measurable and integrabe functions on $D \in A$. Suppose that

$$\lim_{n \to \infty} f_n = f \ a.e. \ on \ D.$$

- (a) Show that if $\lim_{n\to\infty} \int_D |f_n| d\mu = \int_D |f| d\mu$, then $\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu$. (b) Show that the converse of (a) is false by constructing a counter example.

Solution

(a) We will use Problem 71 for

$$g_n = 2(|f_n| + |g_n|)$$
 and $h_n = |f_n - f| + |f_n| - |f|$, $n \in \mathbb{N}$.

We have

$$\begin{split} h_n &\to 0 \quad a.e. \quad \text{on} \quad D, \\ g_n &\to 4|f| \quad a.e. \quad \text{on} \quad D, \\ |h_n| &= h_n \leq 2|f_n| \leq g_n, \\ \lim_{n \to \infty} \int_D g_n d\mu = 2\lim_{n \to \infty} \int_D |f_n| d\mu + 2\int_D |f| d\mu = \int_D 4|f| d\mu. \end{split}$$

So all conditions of Problem 71 are satisfied. Therefore,

$$\lim_{n \to \infty} \int_D h_n d\mu = \int_D h d\mu = 0 \quad (h = 0).$$

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu + \lim_{n \to \infty} \int_D |f_n| d\mu - \int_D |f| d\mu = 0.$$

Since $\lim_{n\to\infty} \int_D |f_n| d\mu - \int_D |f| d\mu = 0$ by assumption, we have

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu = 0.$$

This implies that

$$\lim_{n \to \infty} \left| \int_D f_n d\mu - \int_D f d\mu \right| = 0.$$

Hence, $\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu$.

(b) We will give an example showing that it is not true that

$$\lim_{n\to\infty}\int_D f_n d\mu = \int_D f d\mu \ \Rightarrow \ \lim_{n\to\infty}\int_D |f_n| d\mu = \int_D |f| d\mu.$$

$$f_n(x) = \begin{cases} n & \text{if } 0 \le x < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} \le x \le 1 - \frac{1}{n} \\ -n & \text{if } 1 - \frac{1}{n} < x \le 1. \end{cases}$$

And so

$$|f_n|(x) = \begin{cases} n & \text{if } 0 \le x < \frac{1}{n} \text{ or } 1 - \frac{1}{n} < x \le 1\\ 0 & \text{if } \frac{1}{n} \le x \le 1 - \frac{1}{n}. \end{cases}$$

Then we have

$$f_n \to 0 \equiv 0$$
 and $\int_{[0,1]} f_n d\mu = 0 \to 0 = \int_{[0,1]} 0 d\mu$

while

$$\int_{[0,1]} |f_n| d\mu = 2 \to 2 \neq 0. \quad \blacksquare$$

Problem 73

Given a measure space (X, \mathcal{A}, μ) .

(a) Show that an extended real-valued integrable function is finite a.e. on X.

(b) If $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions defined on X such that $\sum_{n\in\mathbb{N}}\int_X |f_n|d\mu < \infty$, then show that $\sum_{n\in\mathbb{N}}f_n$ converges a.e. to an integrable function f and

$$\int_X \sum_{n \in \mathbb{N}} f_n d\mu = \int_X f d\mu = \sum_{n \in \mathbb{N}} \int_X f_n d\mu.$$

Solution

(a) Let $E = \{X : |f| = \infty\}$. We want to show that $\mu(E) = 0$. Assume that $\mu(E) > 0$. Since f is integrable

$$\infty > \int_X |f| d\mu \ge \int_E |f| d\mu = \infty.$$

This is a contradiction. Thus, $\mu(E) = 0$.

(b) First we note that $\sum_{n=1}^{N} |f_n|$ is measurable since f_n is measurable for $n \in \mathbb{N}$. Hence,

$$\lim_{N \to \infty} \sum_{n=1}^{N} |f_n| = \sum_{n=1}^{\infty} |f_n|$$

is measurable. Recall that (for nonnegative measurable functions)

$$\int_X \sum_{n=1}^{\infty} |f_n| d\mu = \sum_{n=1}^{\infty} \int_X |f_n| d\mu.$$

By assumption,

$$\sum_{n=1}^{\infty} \int_{X} |f_n| d\mu < \infty,$$

hence,

$$\int_{X} \sum_{n=1}^{\infty} |f_n| d\mu < \infty.$$

Since $\sum_{n=1}^{\infty} |f_n|$ is integrable on X, by part (a), it is finite a.e. on X. Define a function f as follows:

$$f(x) = \begin{cases} \sum_{n=1}^{\infty} f_n & \text{where } \sum_{n=1}^{\infty} |f_n| < \infty \\ 0 & \text{otherwise.} \end{cases}$$

So f is everywhere defined and $f = \lim_{N\to\infty} \sum_{n=1}^N f_n$ a.e. Hence, f is measurable on X. Moreover,

$$\left| \int_X f d\mu \right| \le \int_X |f| d\mu = \int_X \left| \sum_{n=1}^\infty f_n \right| d\mu \le \int_X \sum_{n=1}^\infty |f_n| d\mu < \infty.$$

Thus, f is integrable and $h_N = \sum_{n=1}^N f_n$ converges to f a.e. and

$$|h_N| \le \sum_{n=1}^N |f_n| \le \sum_{n=1}^\infty |f_n|$$

which is integrable. By the D.C.T. we have

$$\int_{X} f d\mu = \int_{X} \lim_{N \to \infty} h_{N} d\mu = \lim_{N \to \infty} \int_{X} h_{N}$$

$$= \lim_{N \to \infty} \int_{X} \sum_{n=1}^{N} f_{n} d\mu = \lim_{N \to \infty} \sum_{n=1}^{N} \int_{X} f_{n} d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} f_{n} d\mu. \quad \blacksquare$$

Problem 74

Let f be a real-valued Lebesgue measurable function on $[0,\infty)$ such that

- 1. f is Lebesgue integrable on every finite subinterval of $[0, \infty)$.
- 2. $\lim_{x\to\infty} f(x) = c \in \mathbb{R}$.

Show that

$$\lim_{a \to \infty} \frac{1}{a} \int_{[0,a]} f d\mu_L = c.$$

Solution

By assumption 2. we can write

$$(*) \quad \forall \varepsilon > 0, \exists N : x > N \Rightarrow |f(x) - c| < \varepsilon.$$

Now, for a > N we have

$$\left| \frac{1}{a} \int_{[0,a]} f d\mu_L - c \right| = \left| \frac{1}{a} \int_{[0,a]} (f - c) d\mu_L \right|
\leq \frac{1}{a} \int_{[0,a]} |f - c| d\mu_L
= \frac{1}{a} \left(\int_{[0,N]} |f - c| d\mu_L + \int_{[N,a]} |f - c| d\mu_L \right).$$

By (*) we have

$$x \in [N, a] \Rightarrow |f(x) - c| < \varepsilon.$$

Therefore,

(**)
$$\left| \frac{1}{a} \int_{[0,a]} f d\mu_L - c \right| \le \frac{1}{a} \int_{[0,N]} |f - c| d\mu_L + \frac{(a-N)}{a} \varepsilon.$$

It is evident that

$$\lim_{a \to \infty} \frac{(a - N)}{a} \ \varepsilon = \varepsilon.$$

By assumption 1., |f-c| is integrable on [0,N], so $\int_{[0,N]} |f-c| d\mu_L$ is finite and does not depend on a. Hence

$$\lim_{a \to \infty} \frac{1}{a} \int_{[0,N]} |f - c| d\mu_L = 0.$$

Thus, we can rewrite (**) as

$$\lim_{a \to \infty} \left| \frac{1}{a} \int_{[0,a]} f d\mu_L - c \right| \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this implies that

$$\lim_{a \to \infty} \left| \frac{1}{a} \int_{[0,a]} f d\mu_L - c \right| = 0. \quad \blacksquare$$

Problem 75

Let f be a non-negative real-valued Lebesgue measurable on \mathbb{R} . Show that if $\sum_{n=1}^{\infty} f(x+n)$ is Lebesgue integrable on \mathbb{R} , then f=0 a.e. on \mathbb{R} .

Solution

Recall these two facts:

- 1. If $f_n \geq 0$ is measurable on D then $\int_D \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_D f_n d\mu$.
- 2. If f is defined and measurable on \mathbb{R} then $\int_{\mathbb{R}} f(x+h)d\mu = \int_{\mathbb{R}} f(x)d\mu$.

From these two facts we have

$$\int_{\mathbb{R}} \left(\sum_{n=1}^{\infty} f(x+n) \right) d\mu_L = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x+n) d\mu_L$$
$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x) d\mu_L.$$

Since $\sum_{n=1}^{\infty} f(x+n)$ is Lebesgue integrable on \mathbb{R} ,

$$\int_{\mathbb{R}} \left(\sum_{n=1}^{\infty} f(x+n) \right) d\mu_L < \infty.$$

Therefore,

(*)
$$\sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x) d\mu_L < \infty.$$

Since $\int_{\mathbb{R}} f(x) d\mu_L \ge 0$, (*) implies that $\int_{\mathbb{R}} f(x) d\mu_L = 0$. Thus, f = 0 a.e. on \mathbb{R} .

Problem 76

Show that the Lebesgue Dominated Convergence Theorem holds if a.e. convergence is replaced by convergence in measure.

Solution

We state the theorem:

Given a measure space (X, \mathcal{A}, μ) . Let $(f_n : n \in \mathbb{N})$ be a sequence of extended real-valued \mathcal{A} -measurable functions on $D \in \mathcal{A}$ such that $|f_n| \leq g$ on D for every $n \in \mathbb{N}$ for some integrable non-negative extended real-valued \mathcal{A} -measurable function g on D. If $f_n \xrightarrow{\mu} f$ on D, then f is integrable on D and

$$\lim_{n \to \infty} \int_D f_n d\mu = \int_D f d\mu.$$

Proof:

Let (f_{n_k}) be any subsequence of (f_n) . Then $f_{n_k} \xrightarrow{\mu} f$ since $f_n \xrightarrow{\mu} f$. By Riesz theorem, there exists a subsequence $(f_{n_{k_l}})$ of (f_{n_k}) such that $f_{n_{k_l}} \to f$ a.e. on D. And we have also $|f_{n_{k_l}}| \leq g$ on D. By the Lebesgue D.C.T. we have

(*)
$$\int_{D} f d\mu = \lim_{l \to \infty} \int_{D} f_{n_{k_{l}}} d\mu.$$

Let $a_n = \int_D f_n d\mu$ and $a = \int_D f d\mu$. Then (*) can be written as

$$\lim_{l \to \infty} a_{n_{k_l}} = a.$$

Hence we can say that any subsequence (a_{n_k}) of (a_n) has a subsequence $(a_{n_{k_l}})$ converging to a. Thus, the original sequence, namely (a_n) , converges to the same limit (See Problem 51): $\lim_{n\to\infty} a_n = a$. That is,

$$\lim_{n\to\infty} \int_D f_n d\mu = \int_D f d\mu. \quad \blacksquare$$

Problem 77

Given a measure space (X, \mathcal{A}, μ) . Let $(f_n)_{n \in \mathbb{N}}$ and f be extended real-valued measurable and integrable functions on $D \in \mathcal{A}$.

Suppose that $\lim_{n\to\infty} \int_D |f_n - f| d\mu = 0$. Show that

- (a) $f_n \xrightarrow{\mu} f$ on D.
- (b) $\lim_{n\to\infty} \int_D |f_n| d\mu = \int_D |f| d\mu$.

Solution

(a) Given any $\varepsilon > 0$, for each $n \in \mathbb{N}$, let $E_n = \{D : |f_n - f| \ge \varepsilon\}$. Then

$$\int_{D} |f_n - f| d\mu \ge \int_{E_n} |f_n - f| d\mu \ge \varepsilon \mu(E_n).$$

Since $\lim_{n\to\infty} \int_D |f_n - f| d\mu = 0$, $\lim_{n\to\infty} \mu(E_n) = 0$. That is $f_n \xrightarrow{\mu} f$ on D.

(b) Since f_n and f are integrable

$$\int_{D} (|f_{n}| - |f|) d\mu = \int_{D} |f_{n}| d\mu - \int_{D} |f| d\mu \le \int_{D} |f_{n} - f| d\mu.$$

By this and the assumption, we get

$$\lim_{n \to \infty} \left(\int_D |f_n| d\mu - \int_D |f| d\mu \right) \le \lim_{n \to \infty} \int_D |f_n - f| d\mu = 0.$$

This implies

$$\lim_{n\to\infty} \int_D |f_n| d\mu = \int_D |f| d\mu. \quad \blacksquare$$

Problem 78

Given a measure space (X, \mathcal{A}, μ) . Let $(f_n)_{n \in \mathbb{N}}$ and f be extended real-valued measurable and integrable functions on $D \in \mathcal{A}$. Assume that $f_n \to f$ a.e. on D and $\lim_{n\to\infty} \int_D |f_n| d\mu = \int_D |f| d\mu$. Show that

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu = 0.$$

Solution

For each $n \in \mathbb{N}$, let $h_n = |f_n| + |f| - |f_n - f|$. Then $h_n \ge 0$ for all $n \in \mathbb{N}$. Since $f_n \to f$ a.e. on D, $h_n \to 2|f|$ a.e on D. By Fatou's lemma,

$$\begin{split} 2\int_{D}|f|d\mu &\leq & \liminf_{n\to\infty}\int_{D}(|f_{n}|+|f|)d\mu - \limsup_{n\to\infty}\int_{D}|f_{n}-f|d\mu \\ &= & \lim_{n\to\infty}\int_{D}|f_{n}|d\mu + \lim_{n\to\infty}\int_{D}|f|d\mu - \limsup_{n\to\infty}\int_{D}|f_{n}-f|d\mu \\ &= & 2\int_{D}|f|d\mu - \limsup_{n\to\infty}\int_{D}|f_{n}-f|d\mu. \end{split}$$

Since |f| is integrable, we have

$$\limsup_{n\to\infty} \int_D |f_n - f| d\mu \le 0. \quad (i)$$

Now for each $n \in \mathbb{N}$, let $g_n = |f_n - f| - (|f_n| - |f|)$. Then $h_n \ge 0$ for all $n \in \mathbb{N}$. Since $f_n \to f$ a.e. on D, $g_n \to 0$ a.e on D. By Fatou's lemma,

$$0 = \lim_{n \to \infty} \int_{D} g_{n} d\mu \leq \liminf_{n \to \infty} \int_{D} |f_{n} - f| d\mu - \limsup_{n \to \infty} \int_{D} (|f_{n}| - |f|) d\mu$$

$$\leq \liminf_{n \to \infty} \int_{D} |f_{n} - f| d\mu - \lim_{n \to \infty} \int_{D} |f_{n}| d\mu + \lim_{n \to \infty} \int_{D} |f| d\mu.$$

Hence

$$\liminf_{n \to \infty} \int_{D} |f_n - f| d\mu \ge 0. \quad (ii)$$

From (i) and (ii) it follows that

$$\lim_{n \to \infty} \int_D |f_n - f| d\mu = 0. \quad \blacksquare$$

Problem 79

Let $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ be the Lebesgue space. Let f be an extended real-valued Lebesgue measurable function on \mathbb{R} . Show that if f is integrable on \mathbb{R} then

$$\lim_{h \to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0.$$

Solution

Since f is integrable,

$$\lim_{M \to \infty} \left(\int_{-\infty}^{-M} |f| dx + \int_{M}^{\infty} |f| dx \right) = 0 \text{ for } M \in \mathbb{R}.$$

Given any $\varepsilon > 0$, we can pick an M > 0 such that

$$\int_{-\infty}^{-M} |f| dx + \int_{M}^{\infty} |f| dx < \frac{\varepsilon}{4}.$$

Since $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, we can find a continuous function φ vanishing outside [-M, M] such that

$$\int_{-M}^{M} |f - \varphi| dx < \frac{\varepsilon}{4}.$$

Then we have

$$||f - \varphi||_1 := \int_{\mathbb{R}} |f - \varphi| dx$$

$$= \int_{-M}^{M} |f - \varphi| dx + \int_{-\infty}^{-M} |f| dx + \int_{M}^{\infty} |f| dx$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}.$$

(Recall: $\varphi = 0$ outside [-M, M]). Now for any $h \in \mathbb{R}$ we have

$$||f(x+h) - f(x)||_1 \le ||f(x) - \varphi(x)||_1 + ||\varphi(x) - \varphi(x+h)||_1 + ||\varphi(x+h) - f(x+h)||_1.$$

Because of $\varphi \in C_c(\mathbb{R})$ and translation invariance, we have

$$\lim_{h \to 0} \|\varphi(x) - \varphi(x+h)\|_1 = 0 \text{ and } \|\varphi(x+h) - f(x+h)\|_1 = \|f(x) - \varphi(x)\|_1.$$

It follows that

$$\lim_{h \to 0} \|f(x+h) - f(x)\|_{1} \le \|f - \varphi\|_{1} + \lim_{h \to 0} \|\varphi(x) - \varphi(x+h)\|_{1} + \|f - \varphi\|_{1}$$
$$\le 2 \frac{\varepsilon}{2} + 0 = \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$\lim_{h \to 0} ||f(x+h) - f(x)||_1 = \lim_{h \to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0. \quad \blacksquare$$

96

CHAPTER 7. INTEGRATION OF MEASURABLE FUNCTIONS

Chapter 8

Signed Measures and Radon-Nikodym Theorem

1. Signed measure

Definition 21 (Signed measure)

A signed measure on a measurable space (X, A) is a function $\lambda : A \to [-\infty, \infty]$ such that:

- (1) $\lambda(\emptyset) = 0$.
- (2) λ assumes at most one of the values $\pm \infty$.
- (3) λ is countably additive. That is, if $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ is disjoint, then

$$\lambda\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\lambda(E_n).$$

Definition 22 (Positive, negative, null sets)

Let $(X, \mathcal{A}, \lambda)$ be a signed measure space. A set $E \in \mathcal{A}$ is said to be positive (negative, null) for the signed measure λ if

$$F \in \mathcal{A}, \ F \subset E \Longrightarrow \lambda(F) \ge 0 \ (\le 0, = 0).$$

Proposition 21 (Continuity)

Let $(X, \mathcal{A}, \lambda)$ be a signed measure space.

1. If $(E_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ is an increasing sequence then

$$\lim_{n \to \infty} \lambda(E_n) = \lim_{n \to \infty} \lambda\left(\bigcup_{n \in \mathbb{N}} E_n\right) = \lambda\left(\lim_{n \to \infty} E_n\right).$$

2. If $(E_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ is an decreasing sequence and $\lambda(E_1)<\infty$, then

$$\lim_{n \to \infty} \lambda(E_n) = \lim_{n \to \infty} \lambda\left(\bigcap_{n \in \mathbb{N}} E_n\right) = \lambda\left(\lim_{n \to \infty} E_n\right).$$

www.MathVn.com⁹⁷- Math Vietnam

98 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Proposition 22 (Some more properties)

Let $(X, \mathcal{A}, \lambda)$ be a signed measure space.

- 1. Every measurable subset of a positive (negative, null) set is a positive (negative, null) set.
- 2. If E is a positive set and F is a negative set, then $E \cap F$ is a null set.
- 3. Union of positive (negative, null) sets is a positive (negative, null) set.

Theorem 10 (Hahn decomposition theorem)

Let (X, A, λ) be a signed measure space. Then there is a positive set A and a negative set B such that

$$A \cap B = \emptyset$$
 and $A \cup B = X$.

Moreover, if A' and B' are another pair, then $A \triangle A'$ and $B \triangle B'$ are null sets. $\{A, B\}$ is called a Hahn decomposition of (X, A, λ) .

Definition 23 (Singularity)

Two signed measure λ_1 and λ_2 on a measurable space (X, \mathcal{A}) are said to be mutually singular and we write $\lambda_1 \perp \lambda_2$ if there exist two set $E, F \in \mathcal{A}$ such that $E \cap F = \emptyset$, $E \cup F = X$, E is a null set for λ_1 and F is a null set for λ_2 .

Definition 24 (Jordan decomposition)

Given a signed measure space $(X, \mathcal{A}, \lambda)$. If there exist two positive measures μ and ν , at least one of which is finite, on the measurable (X, \mathcal{A}) such that

$$\mu \perp \nu$$
 and $\lambda = \mu - \nu$,

then $\{\mu, \nu\}$ is called a Jordan decomposition of λ .

Theorem 11 (Jordan decomposition of signed measures)

Given a signed measure space $(X, \mathcal{A}, \lambda)$. A Jordan decomposition for $(X, \mathcal{A}, \lambda)$ exists and unique, that is, there exist a unique pair $\{\mu, \nu\}$ of positive measures on (X, \mathcal{A}) , at least one of which is finite, such that $\mu \perp \nu$ and $\lambda = \mu - \nu$.

Moreover, with any arbitrary Hahn decomposition $\{A, B\}$ of (X, A, λ) , if we define two set functions μ and ν by setting

$$\mu(E) = \lambda(E \cap A)$$
 and $\nu(E) = -\lambda(E \cap B)$ for $E \in \mathcal{A}$,

then $\{\mu, \nu\}$ is a Jordan decomposition for $(X, \mathcal{A}, \lambda)$.

2. Lebesgue decomposition, Radon-Nikodym Theorm

Definition 25 (Radon-Nikodym derivative)

Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}) . If there exists an extended real-valued \mathcal{A} -measurable function f on X such that

$$\lambda(E) = \int_{E} f d\mu \text{ for every } E \in \mathcal{A},$$

then f is called a Radon-Nikodym derivative of λ with respect to μ , and we write $\frac{d\lambda}{d\mu}$ for it.

Proposition 23 (Uniqueness)

Let μ be a σ -finite positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}) . If two extended real-valued \mathcal{A} -measurable functions f and g are Radon-Nikodym derivatives of λ with respect to μ , then f = g μ -a.e. on X.

Definition 26 (Absolute continuity)

Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}) . We say that λ is absolutely continuous with respect to μ and write $\lambda \ll \mu$ if

$$\forall E \in \mathcal{A}$$
), $\mu(E) = 0 \Longrightarrow \lambda(E) = 0$.

Definition 27 (Lebesgue decomposition)

Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}) . If there exist two signed measures λ_a and λ_s on (X, \mathcal{A}) such that

$$\lambda_a \ll \mu$$
, $\lambda_s \perp \mu$ and $\lambda = \lambda_a + \lambda_s$,

then we call $\{\lambda_a, \lambda_s\}$ a Lebesgue decomposition of λ with respect to μ . We call λ_a and λ_s the absolutely continuous part and the singular part of λ with respect to μ .

Theorem 12 (Existence of Lebesgue decomposition)

Let μ be a σ -finite positive measure and λ be a σ -finite signed measure on a measurable space (X, \mathcal{A}) . Then there exist two signed measures λ_a and λ_s on (X, \mathcal{A}) such that

$$\lambda_a \ll \mu, \ \lambda_s \perp \mu, \ \lambda = \lambda_a + \lambda_s \ \text{ and } \lambda_a \text{ is defined by } \lambda_a(E) = \int_E f d\mu, \ \forall E \in \mathcal{A},$$

where f is an extended real-valued measurable function on X.

Theorem 13 (Radon-Nikodym theorem)

Let μ be a σ -finite positive measure and λ be a σ -finite signed measure on a measurable space (X, \mathcal{A}) . If $\lambda \ll \mu$, then the Radon-Nikodym derivative of λ with respect to μ exists, that is, there exists an extended real-valued measurable function on X such that

$$\lambda(E) = \int_{E} f d\mu, \ \forall E \in \mathcal{A}.$$

* * **

Problem 80

Given a signed measure space $(X, \mathcal{A}, \lambda)$. Suppose that $\{\mu, \nu\}$ is a Jordan decomposition of λ , and E and F are two measurable subsets of X such that $E \cap F = \emptyset$, $E \cup F = X$, E is a null set for ν and F is a null set for ν . Show that $\{E, F\}$ is a Hahn decomposition for $(X, \mathcal{A}, \lambda)$.

100 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Solution

We show that E is a positive set for λ and F is a negative set for λ . Since $\{\mu, \nu\}$ is a Jordan decomposition of λ , we have

$$\lambda(E) = \mu(E) - \nu(E), \ \forall E \in \mathcal{A}.$$

Let $E_0 \in \mathcal{A}$, $E_0 \subset E$. Since E is a null set for ν , E_0 is also a null set for ν . Thus $\nu(E_0) = 0$. Consequently, $\lambda(E_0) = \mu(E_0) \geq 0$. This shows that E is a positive set for λ .

Similarly, let $F_0 \in \mathcal{A}$, $F_0 \subset E$. Since F is a null set for μ , F_0 is also a null set for μ . Thus $\mu(F_0) = 0$. Consequently, $\lambda(F_0) = -\nu(F_0) \leq 0$. This shows that F is a negative set for λ .

We conclude that $\{E, F\}$ is a Hahn decomposition for $(X, \mathcal{A}, \lambda)$.

Problem 81

Consider a measure space ([0, 2π], $\mathcal{M}_L \cap [0, 2\pi]$, μ_L). Define a signed measure λ on this space by setting

$$\lambda(E) = \int_{E} \sin x d\mu_L, \text{ for } E \in \mathfrak{M}_L \cap [0, 2\pi].$$

Let $C = [\frac{4}{3}\pi, \frac{5}{3}\pi]$. Let $\varepsilon > 0$ be arbitrary given. Find a measurable set $C' \subset C$ such that $\lambda(C') \geq \lambda(C)$ and $\lambda(E) > -\varepsilon$ for every measurable subset E of C'.

Solution

Let $X = [0, 2\pi]$, $f(x) = \sin x$. Then f is continuous on X, so f is Lebesgue (=Riemann) integrable on X. Given $\varepsilon > 0$, let $\delta = \min\{\frac{\varepsilon}{2}, \frac{\pi}{3}\}$. Let $C' = [\frac{4}{3}\pi, \frac{4}{3}\pi + \delta]$, then

$$C' \subset C$$
 and $f(x) = \sin x < 0, x \in C'$.

We have

$$\lambda(C') = \int_{C'} \sin x d\mu_L \ge \int_C \sin x d\mu_L = \lambda(C).$$

Now for any $E \subset C'$ and $E \in \mathcal{M}_L \cap [0, 2\pi]$, since $\mu(E) \leq \mu(C')$ and $f(x) \leq 0$ on C', we have

$$\lambda(E) = \int_E \sin x d\mu_L \ge \int_{C'} \sin x d\mu_L \ge \int_{C'} (-1) d\mu_L = -\mu(C') = -\delta.$$

By the choice of δ , we have

$$\delta < \frac{\varepsilon}{2} \implies -\delta > -\frac{\varepsilon}{2} > -\varepsilon.$$

Thus, for any $E \in \mathcal{M}_L \cap [0, 2\pi]$ with $E \subset C'$ we have $\lambda(E) > -\varepsilon$.

Problem 82

Given a signed measure space $(X, \mathcal{A}, \lambda)$.

- (a) Show that if $E \in \mathcal{A}$ and $\lambda(E) > 0$, then there exists a subset $E_0 \subset E$ which is a positive set for λ with $\lambda(E_0) \geq \lambda(E)$.
- (b) Show that if $E \in \mathcal{A}$ and $\lambda(E) < 0$, then there exists a subset $E_0 \subset E$ which is a negative set for λ with $\lambda(E_0) \leq \lambda(E)$.

Solution

(a) If E is a positive set for λ then we're done (just take $E_0 = E$).

Suppose E is a not positive set for λ . Let $\{A, B\}$ be a Hahn decomposition of $(X, \mathcal{A}, \lambda)$. Let $E_0 = E \cap A$. Since A is a positive set, so E_0 is also a positive set (for $E_0 \subset A$). Moreover,

$$\lambda(E) = \lambda(E \cap A) + \lambda(E \cap B) = \lambda(E_0) + \lambda(E \cap B).$$

Since $\lambda(E \cap B) \leq 0$, $0 < \lambda(E) \leq \lambda(E_0)$. Thus, $E_0 = E \cap A$ is the desired set.

(b) Similar argument. Answer: $E_0 = E \cap B$.

Problem 83

Let μ and ν two positive measures on a measurable space (X, \mathcal{A}) . Suppose for every $\varepsilon > 0$, there exists $E \in \mathcal{A}$ such that $\mu(E) < \varepsilon$ and $\nu(E^c) < \varepsilon$. Show that $\mu \perp \nu$.

Solution

Recall: For positive measures μ and ν

$$\mu \perp \nu \iff \exists A \in \mathcal{A} : \ \mu(A) = 0 \text{ and } \nu(A^c) = 0.$$

By hypothesis, for every $n \in \mathbb{N}$, there exists $E_n \in \mathcal{A}$ such that

$$\mu(E_n) < \frac{1}{n^2}$$
 and $\nu(E_n^c) < \frac{1}{n^2}$.

Hence,

$$\sum_{n\in\mathbb{N}}\mu(E_n)\leq \sum_{n\in\mathbb{N}}\frac{1}{n^2}<\infty \ \text{and} \ \sum_{n\in\mathbb{N}}\nu(E_n^c)\leq \sum_{n\in\mathbb{N}}\frac{1}{n^2}<\infty.$$

102 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

By Borel-Cantelli's lemma we get

$$\mu\left(\limsup_{n\to\infty} E_n\right) = 0 \text{ and } \nu\left(\limsup_{n\to\infty} E_n^c\right) = 0.$$

Let $A = \limsup_{n \to \infty} E_n$. Then $\mu(A) = 0$. (*)

We claim: $A^c = \liminf_{n \to \infty} E_n^c$. Recall:

$$\liminf_{n\to\infty} A_n = \{x \in X : x \in A_n \text{ for all but finitely many } n \in \mathbb{N}\}.$$

For every $x \in X$, for each $n \in \mathbb{N}$, we have either $x \in E_n$ or $x \in E_n^c$. If $x \in E_n$ for infinitely many n, then $x \in \limsup_{n \to \infty} E_n$ and vice versa. Otherwise, $x \in E_n$ for a finite numbers of n. But this is equivalent to $x \in E_n^c$ for all but finitely many n. That is $x \in \liminf_{n \to \infty} E_n^c$. Hence,

$$\limsup_{n\to\infty} E_n \cup \liminf_{n\to\infty} E_n^c = X.$$

Now, if $x \in \limsup_{n \to \infty} E_n$ then $x \in E_n$ for infinitely many n, so $x \notin \liminf_{n \to \infty} E_n^c$. This shows that

$$\limsup_{n\to\infty} E_n \cap \liminf_{n\to\infty} E_n^c = \emptyset.$$

Thus, $A^c = \liminf_{n \to \infty} E_n^c$ as required.

Last, we show that $\nu(A^c) = 0$. Since $\liminf_{n \to \infty} E_n^c \subset \limsup_{n \to \infty} E_n^c$ and $\nu(\limsup_{n \to \infty} E_n^c) = 0$ (by the first paragraph), we get

$$\nu(\liminf_{n\to\infty} E_n^c) = \nu(A^c) = 0. \quad (**)$$

From (*) and (**) we obtain $\mu \perp \nu$.

Problem 84

Consider the Lebesgue measure space $(\mathbb{R}, \mathcal{M}_L, \mu_L)$. Let ν be the counting measure on \mathcal{M}_L , that is, ν is defined by setting $\nu(E)$ to be equal to the numbers of elements in $E \in \mathcal{M}_L$ if E is a finite set and $\nu(E) = \infty$ if E is infinite set.

- (a) Show that $\mu_L \ll \nu$ but $\frac{d\mu_L}{d\nu}$ does not exist.
- (b) Show that ν does not have a Lebesgue decomposition with respect to μ_L .

Solution

(a) Let $E \subset \mathbb{R}$ with $\nu(E) = 0$. Since ν be the counting measure, $E = \emptyset$. Then $\mu_L(E) = \mu_L(\emptyset) = 0$. Thus,

$$E \subset \mathbb{R}, \ \nu(E) = 0 \ \Rightarrow \ \mu_L(E) = 0.$$

Hence, $\mu_L \ll \nu$.

Suppose there exists a measurable function f such that

$$m_L(E) = \int_E f d\nu$$
 for every $E \in \mathcal{M}_L$.

Take $E = \{x\}, x \in \mathbb{R}$ then we have

$$E \in \mathcal{M}_L$$
, $\mu_L(E) = 0$, and $\nu(E) = 1$.

This implies that $f \equiv 0$. Then for every $A \in \mathcal{M}_L$ we have

$$\mu_L(A) = \int_A 0 d\nu = 0.$$

This is impossible.

(b) Assume that ν have a Lebesgue decomposition with respect to μ_L . Then, for every $E \subset \mathbb{R}$ and some measurable function f,

$$\nu = \nu_a + \nu_s$$
, $\nu_a \ll \mu_L$, $\nu_s \perp \mu_L$, and $\nu_a(E) = \int_E f d\mu_L$.

Since $\nu_s \perp \mu_L$, there exists $A \in \mathcal{M}_L$ such that $\mu_L(A^c) = 0$ and A is a null set for ν_s . Pick $a \in A$ then $\nu_s(\{a\}) = 0$. On the other hand,

$$\nu_a(\{a\}) = \int_{\{a\}} f d\mu_L \text{ and } \mu_L(\{a\}) = 0.$$

It follows that $\nu_a(\{a\}) = 0$. Since $\nu = \nu_a + \nu_s$, we get

$$1 = \nu(\{a\}) = \nu_a(\{a\}) + \nu_s(\{a\}) = 0 + 0 = 0.$$

This is a contradiction. Thus, ν does not have a Lebesgue decomposition with respect to μ_L .

Problem 85

Let μ and ν be two positive measures on a measurable space (X, \mathcal{A}) .

- (a) Show that if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\nu(E) < \varepsilon$ for every $E \in \mathcal{A}$ with $\mu(E) < \delta$, then $\nu \ll \mu$.
- (b) Show that if ν is a finite positive measure, then the converse of (a) holds.

Solution

(a) Suppose this statement is true: (*):= for every $\varepsilon > 0$ there exists $\delta > 0$ such

104 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

that $\nu(E) < \varepsilon$ for every $E \in \mathcal{A}$ with $\mu(E) < \delta$. Take $E \in \mathcal{A}$ with $\mu(E) = 0$. Then

$$\forall \varepsilon > 0, \ \nu(E) < \varepsilon.$$

It follows that $\nu(E) = 0$. Hence $\nu \ll \mu$.

(b) Suppose ν is a finite positive measure and μ is a positive measure such that $\nu \ll \mu$. We want to show (*) is true. Assume that (*) is false. that is

$$\exists \varepsilon > 0 \text{ st } [\forall \delta > 0, \exists E \in \mathcal{A} \text{ st } \{\mu(E) < \delta \text{ and } \nu(E) \ge \varepsilon\}].$$

In particular,

$$\exists \varepsilon > 0 \text{ st } \left[\forall n \in \mathbb{N}, \ \exists E_n \in \mathcal{A} \text{ st } \left\{ \mu(E_n) < \frac{1}{n^2} \text{ and } \nu(E_n) \ge \varepsilon \right\} \right]$$

Since $\sum_{n\in\mathbb{N}} \mu(E_n) \leq \sum_{n\in\mathbb{N}} \frac{1}{n^2} < \infty$, by Borel-Catelli lemma, we have

$$\mu(\limsup_{n\to\infty} E_n) = 0.$$

Set $E = \limsup_{n\to\infty} E_n$, then $\mu(E) = 0$. Since $\nu \ll \mu$, $\nu(E) = 0$. Note that $\nu(X) < \infty$, we have

$$\nu(E) = \nu(\limsup_{n \to \infty} E_n) \ge \limsup_{n \to \infty} \nu(E_n) \ge \nu(E_n) \ge \varepsilon.$$

This is a contradiction. Thus, (*) must be true.

Problem 86

Let μ and ν be two positive measures on a measurable space (X, \mathcal{A}) . Suppose $\frac{d\nu}{d\mu}$ exists so that $\nu \ll \mu$.

- (a) Show that if $\frac{d\nu}{d\mu} > 0$, μ -a.e. on X, then $\mu \ll \nu$ and thus, $\mu \sim \nu$. (b) Show that if $\frac{d\nu}{d\mu} > 0$, μ -a.e. on X and if μ and ν are σ -finite, then $\frac{d\mu}{d\nu}$ exists and

$$\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1}, \quad \mu - a.e. \text{ and } \nu - a.e. \text{ on } X.$$

Solution

(a) For every $E \in \mathcal{A}$, by definition, we have

$$\nu(E) = \int_{E} \frac{d\nu}{d\mu} d\mu.$$

Suppose $\nu(E) = 0$. Since $\frac{d\nu}{d\mu} > 0$, μ -a.e. on X, we have

$$\int_{E} \frac{d\nu}{d\mu} d\mu = 0.$$

Hence, $\mu(E) = 0$. This implies that $\mu \ll \nu$ and so $\mu \sim \nu$ (since $\nu \ll \mu$ is given).

(b) Suppose $\frac{d\nu}{d\mu} > 0$, μ -a.e. on X and if μ and ν are σ -finite. The existence of $\frac{d\mu}{d\nu}$ is guaranteed by the Radon-Nikodym theorem (since $\mu \sim \nu$ by part a). Moreover,

$$\frac{d\mu}{d\nu} > 0$$
, $\nu - a.e.$ on X .

By the chain rule,

$$\begin{split} \frac{d\mu}{d\nu}.\frac{d\nu}{d\mu} &= \frac{d\mu}{d\mu} = 1, \quad \mu-a.e. \text{ on } X. \\ \frac{d\nu}{d\mu}.\frac{d\mu}{d\nu} &= \frac{d\nu}{d\nu} = 1, \quad \nu-a.e. \text{ on } X. \end{split}$$

Thus,

$$\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1}$$
, $\mu - a.e.$ and $\nu - a.e.$ on X .

Problem 87

Let (X, \mathcal{A}, μ) be a measure space. Assume that there exists a measurable function $f: X \to (0, \infty)$ satisfying the condition that $\mu\{x \in X: f(x) \leq n\} < \infty$ for every $n \in \mathbb{N}$.

- (a) Show that the existence of such a function f implies that μ is a σ -finite measure
- (b) Define a positive measure ν on \mathcal{A} by setting

$$\nu(E) = \int_{E} f d\mu \text{ for } E \in \mathcal{A}.$$

Show that ν is a σ -finite measure.

(c) Show that $\frac{d\mu}{d\nu}$ exists and

$$\frac{d\mu}{d\nu} = \frac{1}{f}, \quad \mu - a.e. \text{ and } \nu - a.e. \text{ on } X.$$

106 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Solution

(a)By assumption, $\mu\{x \in X : f(x) \leq n\} < \infty$ for every $n \in \mathbb{N}$. Since $0 < f < \infty$, so $\bigcup_{n=1}^{\infty} \{X : f \leq n\} = X$. Hence μ is a σ -finite measure.

(b) Let $\nu(E) = \int_E f d\mu$ for $E \in \mathcal{A}$.

Since f > 0, ν is a positive measure and if $\mu(E) = 0$ then $\nu(E) = 0$. Hence $\nu \ll \mu$. Conversely, if $\nu(E) = 0$, since f > 0, $\mu(E) = 0$. So $\mu \ll \nu$. Thus, $\mu \sim \nu$. Since μ is σ -finite (by (a)), ν is also σ -finite.

(c) Since ν is σ -finite, $\frac{d\mu}{d\nu}$ exists. By part (b), $f = \frac{d\nu}{d\mu}$. By chain rule,

$$\frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\mu} = 1$$
, $\mu - a.e.$ and $\nu - a.e.$ on X .

Thus,

$$\frac{d\mu}{d\nu} = \frac{1}{f}$$
, $\mu - a.e.$ and $\nu - a.e.$ on X .

Problem 88

Let μ and ν be σ -finite positive measures on (X, \mathcal{A}) . Show that there exist $A, B \in \mathcal{A}$ such that

$$A \cap B = \emptyset$$
, $A \cap B = X$, $\mu \sim \nu$ on $(A, A \cap A)$ and $\mu \perp \nu$ on $(B, A \cap B)$.

Solution

Define a σ -finite measure $\lambda = \mu + \nu$. Then $\mu \ll \lambda$ and $\nu \ll \lambda$. By the Radon-Nikodym theorem there exist non-negative \mathcal{A} -measurable functions f and g such that for every $E \in \mathcal{A}$,

$$\mu(E) = \int_{E} f d\lambda$$
 and $\nu(E) = \int_{E} g d\lambda$.

Let $A = \{x \in X : f(x)g(x) > 0\}$ and $B = A^c$. Then $\mu \sim \nu$. Indeed, f > 0 in A. Thus, if $\mu(E) = 0$, then $\lambda(E) = 0$, and therefore, $\nu(E) = 0$. This implies $\nu \ll \mu$. We can prove $\mu \ll \nu$ in the same manner. Hence, $\mu \sim \nu$.

Let $C = \{x \in B : f(x) = 0\}$, $D = B \setminus C$. For any measurable sets $E \subset C$ and $F \subset D$, $\mu(E) = \nu(F) = 0$. Thus, $\mu \perp \nu$ on $(B, A \cap B)$.

Problem 89

Let μ and ν be σ -finite positive measures on (X, \mathcal{A}) . Show that there exists a non-negative extended real-valued \mathcal{A} -measurable function φ on X and a set $A_0 \in \mathcal{A}$ with $\mu(A_0) = 0$ such that

$$\nu(E) = \int_{E} \varphi d\mu + \nu(E \cap A_0) \text{ for every } E \in \mathcal{A}.$$

Solution

By the Lebesgue decomposition theorem,

$$\nu = \nu_a + \nu_s, \ \nu_a \ll \mu, \ \nu_s \perp \mu \text{ and } \nu_a(E) = \int_E \varphi d\mu \text{ for any } E \in \mathcal{A},$$

where φ is a non-negative extended real-valued \mathcal{A} -measurable function on X. Now since $\nu_s \perp \mu$, there exists $A_0 \in \mathcal{A}$ such that

$$\mu(A_0) = 0$$
 and $\nu_s(A_0^c) = 0$.

Hence

$$\left[\nu_a \ll \mu \text{ and } \mu(A_0) = 0\right] \Longrightarrow \nu_a(A_0) = 0.$$
 (*)

On the other hand, since $\nu_s(E) = \nu_s(E \cap A_0)$ for every $E \in \mathcal{A}$, so we have

$$\nu(E \cap A_0) = \underbrace{\nu_a(E \cap A_0)}_{=0 \text{ by } (*)} + \nu_s(E \cap A_0) = \nu_s(E \cap A_0) = \nu_s(E).$$

Finally,

$$\nu(E) = \nu_a(E) + \nu_s(E) = \int_E \varphi d\mu + \nu(E \cap A_0)$$
 for every $E \in \mathcal{A}$.

www.MATHVN.com - Anh Quang Le, PhD

108 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

www.MATHVN.com - Anh Quang Le, PhD

Chapter 9

Differentiation and Integration

The measure space in this chapter is the space $(\mathbb{R}, \mathcal{M}_L, \mu_L)$. Therefore, we write μ instead of μ_L for the Lebesgue measure. Also, we say f is integrable (derivable) instead of f is μ_L -integrable (derivable).

1. BV functions and absolutely continuous functions

Definition 28 (Variation of f)

Let $[a, b] \subset \mathbb{R}$ with a < b. A partition of [a, b] is a finite ordered set $\mathcal{P} = \{a = x_0 < x_1 < ... < x_n = b\}$. For a real-valued function f on [a, b] we define the variation of f corresponding to a partition \mathcal{P} by

$$V_a^b(f, \mathcal{P}) := \sum_{k=1}^n |f(x_k) - f(x_{k-1})| \in [0, \infty).$$

We define the total variation of f on [a, b] by

$$V_a^b(f) := \sup_{\mathcal{P}} V_a^b(f, \mathcal{P}) \in [0, \infty],$$

where the supremum is taken over all partitions of [a,b]. We say that f is a function of bounded variation on [a,b], or simply a BV function, if $V_a^b(f) < \infty$. We write BV([a,b]) for the collection of all BV functions on [a,b].

Theorem 14 (Jordan decomposition of a BV function)

1. A function f is a BV function on [a,b] if and only if there are two real-valued increasing functions g_1 and g_2 on [a,b] such that $f = g_1 - g_2$ on [a,b]. $\{g_1,g_2\}$ is called a Jordan decomposition of f.

2. If a BV function on [a, b] is continuous on [a, b], then g_1 and g_2 can be chosen to be continuous on [a, b].

Theorem 15 (Derivability and integrability)

If f is a BV function on [a,b], then f' exists a.e. on [a,b] and integrable on [a,b].

www.MathVn.com⁰⁹ Math Vietnam

110

Definition 29 (Absolutely continuous functions)

A real-valued function f on [a,b] is said to be absolutely continuous on [a,b] if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$$

for every finite collection $\{[a_k, b_k]\}_{1 \le k \le n}$ of non-overlapping intervals contained in [a, b] with

$$\sum_{k=1}^{n} |b_k - a_k| < \delta.$$

Theorem 16 (Properties)

If f is an absolutely continuous on [a, b] then

- 1. f is uniformly continuous on [a, b],
- 2. f is a BV function on [a, b],
- 3. f' exists a.e. on [a, b],
- 4. f is integrable on [a, b].

Definition 30 (Condition (N))

Let f be a real-valued function on [a,b]. We say that f satisfies Lusin's Condition (N) on [a,b] if for every $E \subset [a,b]$ with $\mu_L(E) = 0$, we have $\mu(f(E)) = 0$.

Theorem 17 (Banach-Zarecki criterion for absolute continuity)

Let f be a real-valued function on [a,b]. Then f is absolutely continuous on [a,b] if and only if it satisfies the following three conditions:

- 1. f is continuous on [a,b].
- 2. f is of BV on [a,b].
- 3. f satisfies condition (N) on [a,b].

2. Indefinite integrals and absolutely continuous functions

Definition 31 (Indefinite integrals)

Let f be a extended real-valued function on [a,b]. Suppose that f is measurable and integrable on [a,b]. By indefinite integral of f on [a,b] we mean a real-valued function F on [a,b] defined by

$$F(x) = \int_{[a,x]} f d\mu + c, \quad x \in [a,b] \quad and \ c \in \mathbb{R} \text{ is a constant.}$$

Theorem 18 (Lebesgue differentiation theorem)

Let f be a extended real-valued, measurable and integrable function on [a,b]. Let F be an indefinite integral of f on [a,b]. Then

- 1. F is absolutely continuous on [a, b],
- 2. F' exists a.e. on [a,b] and F'=f a.e. on [a,b],

Theorem 19 Let f be a real-valued absolutely continuous on [a, b]. Then

$$\int_{[a,x]} f' d\mu = f(x) - f(a), \ \forall x \in [a,b].$$

Thus, an absolutely continuous function is an indefinite integral of its derivative.

Theorem 20 (A characterization of an absolutely continuous function)

A real-valued function f on [a,b] is absolutely continuous on [a,b] if and only if it satisfies the following conditions:

- (i) f' exists a.e. on [a, b]
- (ii) f' is measurable and integrable on [a, b].
- (iii) $\int_{[a,x]} f' d\mu = f(x) f(a), \ \forall x \in [a,b].$

3. Indefinite integrals and BV functions

Theorem 21 (Total variation of F)

Let f be a extended real-valued measurable and integrable function on [a,b]. Let F be an indefinite integral of f on [a,b] defined by

$$F(x) = \int_{[a,x]} f d\mu + c, \quad x \in [a,b].$$

Then the total variation of F is given by

$$V_a^b(F) = \int_{[a,b]} |f| d\mu.$$

* * **

Problem 90

Let $f \in BV([a,b])$. Show that if $f \ge c$ on [a,b] for some constant c > 0, then $\frac{1}{f} \in BV([a,b])$.

Solution

Let $\mathcal{P} = \{a = x_0 < x_1 < \dots < x_n = b\}$ be a partition of [a, b]. Then

$$V_a^b\left(\frac{1}{f},\mathcal{P}\right) = \sum_{k=1}^n \left| \frac{1}{f(x_k)} - \frac{1}{f(x_{k-1})} \right| = \sum_{k=1}^n \frac{|f(x_k) - f(x_{k-1})|}{|f(x_k)f(x_{k-1})|}.$$

Since $f \ge c > 0$,

$$\frac{|f(x_k) - f(x_{k-1})|}{|f(x_k)f(x_{k-1})|} \le \frac{|f(x_k) - f(x_{k-1})|}{c^2}.$$

It follows that

$$V_a^b\left(\frac{1}{f},\mathcal{P}\right) \le \frac{1}{c^2} \sum_{k=1}^n |f(x_k) - f(x_{k-1})| = \frac{1}{c^2} V_a^b(f,\mathcal{P}) \le \frac{1}{c^2} V_a^b(f).$$

Since $V_a^b(f) < \infty$, $V_a^b(\frac{1}{f}) < \infty$.

Problem 91

Let $f, g \in BV([a, b])$. Show that $fg \in BV([a, b])$ and

$$V_a^b(fg) \le \sup_{[a,b]} |f| \cdot V_a^b(g) + \sup_{[a,b]} |g| \cdot V_a^b(f).$$

Solution

Note first that $f, g \in BV([a, b])$ implies that f and g are bounded on [a, b]. There are some $0 < M < \infty$ and $0 < N < \infty$ such that

$$M = \sup_{[a,b]} |f|$$
 and $N = \sup_{[a,b]} |g|$.

For any $x, y \in [a, b]$ we have

$$|f(x)g(x) - f(y)g(y)| \le |f(x) - f(y)||g(x)| + |g(x) - g(y)||f(y)| < N|f(x) - f(y)| + M|g(x) - g(y)| (*).$$

Now, let $\mathcal{P} = \{a = x_0 < x_1 < ... < x_n = b\}$ be any partition of [a, b]. Then we have

$$V_a^b(fg, \mathcal{P}) = \sum_{k=1}^n |f(x_k)g(x_k) - f(x_{k-1})g(x_{k-1})|$$

$$\leq M \sum_{k=1}^n |g(x_k) - g(x_{k-1})| + N \sum_{k=1}^n |f(x_k) - f(x_{k-1})|$$

$$\leq M V_a^b(g, \mathcal{P}) + N V_a^b(f, \mathcal{P}).$$

Since \mathcal{P} is arbitrary,

$$\sup_{\mathcal{P}} V_a^b(fg, \mathcal{P}) \le M \sup_{\mathcal{P}} V_a^b(g, \mathcal{P}) + N \sup_{\mathcal{P}} V_a^b(f, \mathcal{P}),$$

where the supremum is taken over all partitions of [a, b]. Thus,

$$V_a^b(fg) \le \sup_{[a,b]} |f| . V_a^b(g) + \sup_{[a,b]} |g| . V_a^b(f).$$

Problem 92

Let f be a real-valued function on [a,b]. Suppose f is continuous on [a,b] and satisfying the Lipschitz condition, that is, there exists a constant M>0 such that

$$|f(x') - f(x'')| \le M|x' - x''|, \ \forall x', x'' \in [a, b].$$

Show that $f \in BV([a,b])$ and $V_a^b(f) \le M(b-a)$.

Solution

Let $\mathcal{P} = \{a = x_0 < x_1 < ... < x_n = b\}$ be any partition of [a, b]. Then

$$V_a^b(f, \mathcal{P}) = \sum_{k=1}^n |f(x_k) - f(x_{k-1})|$$

$$\leq M \sum_{k=1}^n (x_k - x_{k-1})$$

$$\leq M(x_n - x_0) = M(b - a).$$

This implies that

$$V_a^b(f) = \sup_{\mathcal{D}} V_a^b(f, \mathcal{P}) \le M(b - a) < \infty.$$

Problem 93

Let f be a real-valued function on [a,b]. Suppose f is continuous on [a,b] and is differentiable on (a,b) with $|f'| \leq M$ for some constant M > 0. Show that $f \in BV([a,b])$ and $V_a^b(f) \leq M(b-a)$.

Hint:

Show that f satisfies the Lipschitz condition.

Problem 94

Let f be a real-valued function on $[0, \frac{2}{\pi}]$ defined by

$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{for } x \in (0, \frac{2}{\pi}] \\ 0 & \text{for } x = 0. \end{cases}$$

Show that $f \notin BV([0, \frac{2}{\pi}])$.

Solution

Let us choose a particular partition of $[0, \frac{2}{\pi}]$:

$$x_1 = \frac{2}{\pi} > x_2 = \frac{2}{\pi + 2\pi} > \dots > x_{2n-1} = \frac{2}{\pi + 2n \cdot 2\pi} > x_{2n} = 0.$$

Then we have

$$V_0^{\frac{2}{\pi}}(f,\mathcal{P}) = |f(x_1) - f(x_2)| + |f(x_2) - f(x_3)| + \dots + |f(x_{2n-1}) - f(x_{2n})|$$

$$= \underbrace{2 + 2 + \dots + 2}_{2n-1} + 1 = (2n-1)2 + 1.$$

Therefore,

$$\sup_{\mathcal{P}} V_0^{\frac{2}{\pi}}(f, \mathcal{P}) = \infty,$$

where the supremum is taken over all partitions of $[0, \frac{2}{\pi}]$. Thus, f is not a BV function.

Problem 95

Let f be a real-valued continuous and BV function on [0,1]. Show that

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|^2 = 0.$$

Solution

Since f is continuous on [0, 1], which is compact, f is uniformly continuous on [0, 1]. Hence,

$$\forall \varepsilon > 0, \ \exists N > 0: \ |x - y| \le \frac{1}{N} \ \Rightarrow \ |f(x) - f(y)| \le \varepsilon, \ \forall x, y \in [0, 1].$$

Partition of [0, 1]:

$$x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < \dots < x_n = \frac{n}{n} = 1.$$

For $n \ge N$ we have $\left| \frac{i}{n} - \frac{i-1}{n} \right| = \frac{1}{n} \le \frac{1}{N}$. Hence,

$$\left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right| \le \varepsilon, \ i = 1, 2, \dots$$

Now we can write, for $n \geq N$,

$$\left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|^2 = \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right| \cdot \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|$$

$$\leq \varepsilon \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|,$$

and so

$$\sum_{i=1}^n \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|^2 \le \varepsilon \sum_{i=1}^n \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right| \le \varepsilon V_0^1(f).$$

Since $V_0^1(f) < \infty$, we can conclude that

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|^2 = 0. \quad \blacksquare$$

Problem 96

Let $(f_i: i \in \mathbb{N})$ and f be real-valued functions on an interval [a,b] such that $\lim_{i\to\infty} f_i(x) = f(x)$ for $x \in [a,b]$. Show that

$$V_a^b(f) \le \liminf_{i \to \infty} V_a^b(f_i).$$

Solution

Let $P_n = \{a = x_0 < x_1 < \dots < x_n = b\}$ be a partition of [a, b]. Then

$$V_a^b(f, P_n) = \sum_{k=1}^n |f(x_k) - f(x_{k-1})|,$$

$$V_a^b(f_i, P_n) = \sum_{k=1}^n |f_i(x_k) - f_i(x_{k-1})| \text{ for each } i \in \mathbb{N}.$$

Consider the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ where ν is the counting measure. Let $D = \{1, 2, ..., n\}$. Then $D \in \mathcal{P}(\mathbb{N})$. Define

$$g_i(k) = |f_i(x_k) - f_i(x_{k-1})| \ge 0,$$

 $g(k) = |f(x_k) - f(x_{k-1})| \text{ for } k \in D.$

116

Since $\lim_{i\to\infty} f_i(x) = f(x)$ for $x \in [a, b]$, we have

$$\lim_{i \to \infty} g_i(k) = g(k) \text{ for every } k \in D.$$

By Fatou's lemma,

$$\int_{D} g(k)d\nu = \int_{D} \lim_{i \to \infty} g_i(k)d\nu \le \liminf_{i \to \infty} \int_{D} g_i(k)d\nu. \quad (*)$$

Since $D = \bigsqcup_{k=1}^{n} \{k\}$ (union of disjoint sets), we have

$$\int_{D} g(k)d\nu = \sum_{k=1}^{n} \int_{\{k\}} g(k)d\nu$$

$$= \sum_{k=1}^{n} g(k)$$

$$= \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

$$= V_a^b(f, P_n).$$

Similarly, we get

$$\int_D g_i(k)d\nu = V_a^b(f_i, P_n) \text{ for each } i \in \mathbb{N}.$$

With these, we can rewrite (*) as follows:

$$V_a^b(f, P_n) \le \liminf_{i \to \infty} V_a^b(f_i, P_n).$$

By taking all partitions P_n , we obtain

$$V_a^b(f) \leq \liminf_{i \to \infty} V_a^b(f_i).$$

Problem 97

Let f be a real-valued absolutely continuous function on [a,b]. If f is never zero, show that $\frac{1}{f}$ is also absolutely continuous on [a,b].

Solution

The function f is continuous on [a, b], which is compact, so f has a minimum on it. Since f is non-zero, there is some $m \in (0, \infty)$ such that

$$\min_{x \in [a,b]} |f(x)| = m.$$

Given any $\varepsilon > 0$ there exists $\delta > 0$ such that for any finite family of non-overlapping closed intervals $\{[a_i, b_i]: i = 1, ..., n\}$ in [a, b] such that $\sum_{i=1}^{n} (b_i - a_i) < \delta$ we have $\sum_{i=1}^{n} |f(a_i) - f(b_i)| < \varepsilon$. Now,

$$\sum_{i=1}^{n} \left| \frac{1}{f(a_i)} - \frac{1}{f(b_i)} \right| = \sum_{i=1}^{n} \frac{|f(a_i) - f(b_i)|}{|f(a_i)f(b_i)|}$$

$$\leq \frac{1}{m^2} \sum_{i=1}^{n} |f(a_i) - f(b_i)|$$

$$\leq \frac{\varepsilon}{m^2}. \quad \blacksquare$$

Problem 98

Let f be a real-valued function on [a, b] satisfying the Lipschitz condition on [a, b]. Show that f is absolutely continuous on [a, b].

Solution

The Lipschitz condition on [a, b]:

$$\exists K > 0 : \forall x, y \in [a, b], |f(x) - f(y)| \le K|x - y|.$$

Given any $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{K}$. Let $\{[c_i, d_i] : i = 1, ..., n\}$ be a family of non-overlapping subintervals of [a, b] with $\sum_{i=1}^{n} (d_i - c_i) < \delta$, then, by the Lipschitz condition, we have

$$\sum_{i=1}^{n} |f(c_k) - f(d_k)| \leq \sum_{i=1}^{n} K(d_k - c_k)$$

$$\leq K \sum_{i=1}^{n} (d_k - c_k)$$

$$< K \frac{\varepsilon}{K} = \varepsilon.$$

Thus f is absolutely continuous on [a, b].

Problem 99

Show that if f is continuous on [a,b] and f' exists on (a,b) and satisfies $|f'(x)| \leq M$ for $x \in (a,b)$ with some M > 0, then f satisfies the Lipschitz condition and thus absolutely continuous on [a,b].

(Hint: Just use the Intermediate Value Theorem.)

Problem 100

Let f be a continuous function on [a,b]. Suppose f' exists on (a,b) and satisfies $|f'(x)| \leq M$ for $x \in (a,b)$ with some M > 0. Show that for every $E \subset [a,b]$ we have

$$\mu_L^*(f(E)) \le M\mu_L^*(E).$$

Solution

Recall:

$$\mu_L^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \ell(I_n) : I_n \text{ are open intervals and } \bigcup_{n=1}^{\infty} I_n \supset E \right\}.$$

Let $E \subset [a,b]$. Let $\{I_n = (a'_n,b'_n)\}$ be a covering of E, where each $(a'_n,b'_n) \subset [a,b]$. Then

$$E \subset \bigcup_n (a'_n, b'_n) \Rightarrow f(E) \subset \bigcup_n f((a'_n, b'_n)).$$

Since f is continuous, $f((a'_n, b'_n))$ must be an interval. So

$$f((a'_n, b'_n)) = (f(a_n), f(b_n))$$
 for $a_n, b_n \in (a'_n, b'_n)$.

Hence,

$$f(E) \subset \bigcup_{n} (f(a_n), f(b_n)).$$

Therefore $\{(f(a_n), f(b_n))\}$ is a covering of f(E). By the Mean Value Theorem,

$$\ell\Big(\big(f(a_n), f(b_n)\big)\Big) = |f(b_n) - f(a_n)|$$

$$= |f'(x)||b_n - a_n|, \quad x \in (a_n, b_n)$$

$$\leq M|b_n - a_n|.$$

It follows that

$$\sum_{n} \ell((f(a_n), f(b_n))) \leq M \sum_{n} |b_n - a_n| \leq M \sum_{n} |b'_n - a'_n|$$

$$\leq M \sum_{n} \ell((a'_n, b'_n)).$$

Thus,

$$\inf \sum_{n} \ell((f(a_n), f(b_n))) \le M \inf \sum_{n} \ell((a'_n, b'_n)).$$

The infimum is taken over coverings of f(E) and E respectively. By definition (at the very first of the proof) we have

$$\mu_L^*(f(E)) \le M\mu_L^*(E).$$

Problem 101

Let f be a real-valued function on [a,b] such that f is absolutely continuous on $[a+\eta,b]$ for every $\eta \in (0,b-a)$. Show that if f is continuous and of bounded variation on [a,b], then f is absolutely continuous on [a,b].

Solution

Using the Banach-Zaracki theorem, to show that f is absolutely continuous on [a, b], we need to show that f has property (N) on [a, b]. Suppose $E \subset [a, b]$ such that $\mu_L(E) = 0$. Given any $\varepsilon > 0$, since f is continuous at a^+ , there exists $\delta \in (0, b - a)$ such that

$$a \le x \le a + \delta \implies |f(x) - f(a)| < \frac{\varepsilon}{2}.$$
 (*)

Let $E_1 = E \cap [a, a + \delta]$ and $E_2 = E \setminus E_1$. Then $E = E_1 \cup E_2$ and so $f(E) = f(E_1) \cup f(E_2)$. But $E_2 \subset [a + \delta, b)$ and f is absolutely continuous on $[a + \delta, b]$, so f has property (N) on this interval. Since $E_2 \subset E$, we have $\mu_L(E_2) = 0$. Therefore,

$$\mu_L(f(E_2)) = 0 = \mu_L^*(f(E_2)).$$

On the other hand,

$$x \in E_1 \implies x \in [a, a + \delta)$$

$$\Rightarrow f(a) - \frac{\varepsilon}{2} \le f(x) \le f(a) + \frac{\varepsilon}{2} \text{ by } (*)$$

$$\Rightarrow f(E_1) \subset [f(a) - \frac{\varepsilon}{2}, f(a) + \frac{\varepsilon}{2}]$$

$$\Rightarrow \mu_L^*(f(E_1)) \le \varepsilon.$$

Thus,

$$\mu_L^*(f(E)) \le \mu_L^*(f(E_1)) + \mu_L^*(f(E_2)) \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $\mu_L^*(f(E)) = 0$ and so $\mu_L(f(E)) = 0$.

Problem 102

Let f be a real-valued integrable function on [a, b]. Let

$$F(x) = \int_{[a,x]} f d\mu_L, \quad x \in [a,b].$$

Show that F is continuous and of bounded variation on [a,b].

Solution

The continuity follows from Theorem 18 (absolute continuity implies continuity). To show that F is of BV on [a, b], let $a = x_0 < x_1 < ... < x_n = b$ be any partition of [a, b]. Then

$$\sum_{i=1}^{n} |F(x_i - x_{i-1})| = \sum_{i=1}^{n} \left| \int_{[x_{i-1}, x_i]} f d\mu_L \right|$$

$$\leq \sum_{i=1}^{n} \int_{[x_{i-1}, x_i]} |f| d\mu_L$$

$$= \int_{[a, b]} |f| d\mu_L.$$

Thus, since |f| is integrable,

$$V_a^b(F) \le \int_{[a,b]} |f| d\mu_L < \infty. \quad \blacksquare$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 10

L^p Spaces

1. Norms

For 0 :

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}.$$

For $p = \infty$:

$$||f||_{\infty} = \inf\{M \in [0,\infty): \ \mu\{x \in X: \ |f(x)| > M\} = 0\}.$$

Theorem 22 Let (X, \mathcal{A}, μ) be a measure space. Then the linear space $L^p(X)$ is a Banach space with respect to the norm $\|.\|_p$ for $1 \le p < \infty$ or the norm $\|.\|_\infty$ for $p = \infty$.

- 2. Inequalities for $1 \le p < \infty$
- 1. Hölder's inequality: If p and q satisfy the condition $\frac{1}{p} + \frac{1}{q} = 1$, then for $f \in L^p(X)$, $g \in L^q(X)$, we have

$$\int_X |fg| d\mu = \left(\int_X |f|^p d\mu\right)^{1/p} \left(\int_X |g|^q d\mu\right)^{1/q},$$

or

$$||fg||_1 \le ||f||_p ||g||_q$$
.

In particular,

$$||fg||_1 \le ||f||_2 ||g||_2$$
 (Schwarz's inequality).

2. Minkowski's inequality: For $f, g \in L^p(X)$, we have

$$||f + g||_p \le ||f||_p + ||g||_p.$$

3. Convergence

Theorem 23 Let (f_n) be a sequence in $L^p(X)$ and f an element in $L^p(X)$ with $1 \le p < \infty$. If $f_n \to f$ in $L^p(X)$, i.e., $||f_n - f||_p \to 0$, then

- (1) $||f_n||_p \to ||f||_p$,
- (2) $f_n \xrightarrow{\mu} f$ on X,
- (3) There exists a subsequence (f_{n_k}) such that $f_{n_k} \to f$ a.e. on X.

www.MathVn.com²¹ Math Vietnam

122

Theorem 24 Let (f_n) be a sequence in $L^p(X)$ and f an element in $L^p(X)$ with $1 \le p < \infty$. If $f_n \to f$ a.e. on X and $||f_n||_p \to ||f||_p$, then $||f_n - f||_p \to 0$.

Theorem 25 Let (f_n) be a sequence in $L^p(X)$ and f an element in $L^p(X)$ with $1 \le p < \infty$. If $f_n \xrightarrow{\mu} f$ on X and $||f_n||_p \to ||f||_p$, then $||f_n - f||_p \to 0$.

Theorem 26 Let (f_n) be a sequence in $L^p(X)$ and f an element in $L^p(X)$ with $1 \le p < \infty$. If $||f_n - f||_{\infty} \to 0$, then

- (1) $||f_n||_{\infty} \to ||f||_{\infty}$,
- (2) $f_n \to f$ uniformly on $X \setminus E$ where E is a null set.
- (3) $f_n \xrightarrow{\mu} f$ on X.

Problem 103

Let f be a Lebesgue measurable function on [0,1]. Suppose $0 < f(x) < \infty$ for all $x \in [0,1]$. Show that

$$\left(\int_{[0,1]} f d\mu\right) \left(\int_{[0,1]} \frac{1}{f} d\mu\right) \ge 1.$$

Solution

The functions \sqrt{f} and $\frac{1}{\sqrt{f}}$ are Lebesgue measurable since f is Lebesgue measurable and $0 < f < \infty$. By Schwarz's inequality, we have

$$1 = \int_{[0,1]} 1 d\mu = \int_{[0,1]} \sqrt{f} \frac{1}{\sqrt{f}} d\mu \le \left(\int_{[0,1]} \left(\sqrt{f} \right)^2 d\mu \right)^{1/2} \left(\int_{[0,1]} \left(\frac{1}{\sqrt{f}} \right)^2 d\mu \right)^{1/2} \le \left(\int_{[0,1]} f d\mu \right)^{1/2} \left(\int_{[0,1]} \frac{1}{f} d\mu \right)^{1/2}.$$

Squaring both sides we get

$$\left(\int_{[0,1]} f d\mu\right) \left(\int_{[0,1]} \frac{1}{f} d\mu\right) \ge 1. \quad \blacksquare$$

Problem 104

Let (X, \mathcal{A}, μ) be a finite measure space. Let $f \in L^p(X)$ with $p \in (1, \infty)$ and q its conjugate. Show that

$$\int_X |f| d\mu \le \mu(X)^{\frac{1}{q}} \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}}.$$

Hint:

Write

$$f = f\mathbf{1}_X$$

where $\mathbf{1}_X$ is the characteristic function of X, then apply the Hölder's inequality.

Problem 105

Let (X, \mathcal{A}, μ) be a finite measure space.

- (1) If $1 \le p < \infty$ show that $L^{\infty}(X) \subset L^{p}(X)$.
- (2) If $1 \le p_1 < p_2 < \infty$ show that $L^{p_2}(X) \subset L^{p_1}(X)$.

Solution

(1) Take any $f \in L^{\infty}(X)$. Then $||f||_{\infty} < \infty$. By definition, we have $|f| \leq ||f||_{\infty}$ a.e. on X. So we have

$$\int_{X} |f|^{p} d\mu \le \int_{X} ||f||_{\infty}^{p} d\mu = \mu(X) ||f||_{\infty}^{p}.$$

By assumption, $\mu(X) < \infty$. Thus $\int_X |f|^p d\mu < \infty$. That is $f \in L^p(X)$.

(2) Consider the case $1 \leq p_1 < p_2 < \infty$. Take any $f \in L^{p_2}(X)$. Let $\alpha := \frac{p_2}{p_1}$. Then $1 < \alpha < \infty$. Let $\beta \in (1, \infty)$ be the conjugate of α , that is, $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. By the Hölder's inequality, we have

$$\int_{X} |f|^{p_{1}} d\mu = \int_{X} (|f|^{p_{2}})^{1/\alpha} \mathbf{1}_{X} d\mu$$

$$\leq \left(\int_{X} |f|^{p_{2}} d\mu \right)^{1/\alpha} \left(\int_{X} |\mathbf{1}_{X}|^{\beta} d\mu \right)^{1/\beta}$$

$$= ||f||_{p_{2}}^{p_{2}/\alpha} \mu(X) < \infty,$$

since $||f||_{p_2} < \infty$ and $\mu(X) < \infty$. Thus $f \in L^{p_1}(X)$.

Problem 106 (Extension of Hölder's inequality)

Let (X, \mathcal{A}, μ) be an arbitrary measure space. Let $f_1, ..., f_n$ be extended complexvalued measurable functions on X such that $|f_1|, ..., |f_n| < \infty$ a.e. on X. Let $p_1, ..., p_n$ be real numbers such that

$$p_1, ..., p_n \in (1, \infty)$$
 and $\frac{1}{p_1} + ... + \frac{1}{p_n} = 1$.

Prove that

$$||f_1...f_n||_1 \le ||f_1||_{p_1}...||f_n||_{p_n}.$$
 (*)

Hint:

Proof by induction. For n=2 we have already the Hölder's inequality. Assume that (*) holds for $n \geq 2$. Let

$$q = \left(\frac{1}{p_1} + \ldots + \frac{1}{p_n}\right)^{-1}.$$

Then

$$q, p_{n+1} \in (0, \infty)$$
 and $\frac{1}{q} + \frac{1}{p_{n+1}} = 1$.

Keep going this way.

Problem 107

Let (X, \mathcal{A}, μ) be an arbitrary measure space. Let $f_1, ..., f_n$ be extended complexvalued measurable functions on X such that $|f_1|, ..., |f_n| < \infty$ a.e. on X. Let $p_1, ..., p_n$ and r be real numbers such that

$$p_1, ..., p_n, r \in (1, \infty)$$
 and $\frac{1}{p_1} + ... + \frac{1}{p_n} = \frac{1}{r}$. (i)

Prove that

$$||f_1...f_n||_r \le ||f_1||_{p_1}...||f_n||_{p_n}$$

Solution

We can write (i) as follows:

$$\frac{1}{p_1/r} + \dots + \frac{1}{p_n/r} = 1.$$

From the extension of Hölder's inequality (Problem 105) we have

$$|||f_1...f_n|^r||_1 \le |||f_1|^r||_{p_1/r}...|||f_n|^r||_{p_n/r}.$$
 (ii)

Now we have

$$||f_1...f_n|^r||_1 = \int_X |f_1...f_n|^r d\mu = ||f_1...f_n||_r^r,$$

and for i = 1, ..., n we have

$$|||f_i|^r||_{p_i/r} = \left(\int_X |f_i|^{r\frac{p_i}{r}} d\mu\right)^{r/p_i} = \left(\int_X |f_i|^{p_i} d\mu\right)^{r/p_i} = ||f_i||_{p_i}^r.$$

By substituting these expressions into (ii), we have

$$||f_1...f_n||_r^r \le ||f_1||_{p_1}^r...||f_n||_{p_n}^r.$$

Taking the r-th roots both sides of the above inequality we obtain (i).

Problem 108

Let (X, \mathcal{A}, μ) be a measure space. Let $\theta \in (0, 1)$ and let $p, q, r \geq 1$ with $p, q \geq r$ be related by

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

Show that for every extended complex-valued measurable function on X we have

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}$$
.

Solution

Recall: (Extension of Holder's inequality)

$$\frac{1}{r} = \frac{1}{p_1} + \dots + \frac{1}{p_n} \implies ||f_1 \dots f_n||_r \le ||f||_{p_1} \dots ||f_n||_{p_n}.$$

For n=2 we have

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \implies ||fg||_r \le ||f||_p ||g||_q.$$

Now, we have

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q} = \frac{1}{p/\theta} + \frac{1}{q/(1-\theta)}.$$

CHAPTER 10. L^P SPACES

Applying the above formula we get

$$||f||_r = |||f|^{\theta} \cdot |f|^{1-\theta}|| \le |||f|^{\theta}||_{p/\theta} \cdot |||f|^{1-\theta}||_{q/(1-\theta)}.$$
 (*)

Some more calculations:

$$|||f|^{\theta}||_{p/\theta} = \left(\int_{X} (|f|^{\theta})^{p/\theta}\right)^{\theta/p}$$
$$= \left(\int_{X} |f|^{p}\right)^{\theta/p}$$
$$= ||f||_{p}^{\theta}.$$

And

$$||f|^{1-\theta}||_{q/(1-\theta)} = \left(\int_X (|f|^{1-\theta})^{q/1-\theta} \right)^{1-\theta/q}$$

$$= \left(\int_X |f|^q \right)^{1-\theta/q}$$

$$= ||f||_q^{1-\theta}.$$

Plugging into (*) we obtain

$$||f||_r \le ||f||_p^{\theta} \cdot ||f||_q^{1-\theta}$$
.

Problem 109

Let (X, \mathcal{A}, μ) be a measure space. Let $p, q \in [1, \infty]$ be conjugate. Let $(f_n)_{n \in \mathbb{N}} \subset L^p(X)$ and $f \in L^p(X)$ and similarly $(g_n)_{n \in \mathbb{N}} \subset L^q(X)$ and $g \in L^q(X)$. Show that

$$\left[\lim_{n \to \infty} \|f_n - f\|_p = 0 \text{ and } \lim_{n \to \infty} \|g_n - g\|_q = 0\right] \Rightarrow \lim_{n \to \infty} \|f_n g_n - fg\|_1 = 0.$$

Solution

We use Hölder's inequality:

$$||f_{n}g_{n} - fg||_{1} = \int_{X} |f_{n}g_{n} - fg|d\mu$$

$$\leq \int_{X} (|f_{n}g_{n} - f_{n}g| + |f_{n}g - fg|)d\mu$$

$$\leq \int_{X} |f_{n}||g_{n} - g|d\mu + \int_{X} |g||f_{n} - f|d\mu$$

$$\leq ||f_{n}||_{p} \cdot ||g_{n} - g||_{q} + ||g||_{q} \cdot ||f_{n} - f||_{p}. \quad (*)$$

www.MathVn.com - Math Vietnam

126

By Minkowski's inequality, we have

$$||f_n||_p \le ||f||_p + ||f_n - f||_p.$$

Since $||f||_p$ and $||f_n - f||_p$ are bounded (why?), $||f_n||_p$ is bounded for every $n \in \mathbb{N}$. From assumptions we deduce that $\lim_{n\to\infty} ||f_n||_p . ||g_n - g||_q = 0$.

Since $||g||_q$ is bounded, from assumptions we get $\lim_{n\to\infty} ||g||_q \cdot ||f_n - f||_p = 0$. Therefore, from (*) we obtain

$$\lim_{n\to\infty} \|f_n g_n - fg\|_1 = 0. \quad \blacksquare$$

Problem 110

Let (X, \mathcal{A}, μ) be a measure space and let $p \in [1, \infty)$. Let $(f_n)_{n \in \mathbb{N}} \subset L^p(X)$ and $f \in L^p(X)$ be such that $\lim_{n \to \infty} \|f_n - f\|_p = 0$. Let $(g_n)_{n \in \mathbb{N}}$ be a sequence of complex-valued measurable functions on X such that $|g_n| \leq M$ for every $n \in \mathbb{N}$ and let g be a complex-valued measurable function on X such that $\lim_{n \to \infty} g_n = g$ a.e. on X. Show that

$$\lim_{n\to\infty} ||f_n g_n - fg||_p = 0.$$

Solution

We first note that $|g| \leq M$ a.e. on X. Indeed, we have for all $n \in \mathbb{N}$,

$$|g| \le |g_n - g| + |g_n|.$$

Since $|g_n| \leq M$ for every $n \in \mathbb{N}$ and $|g_n - g| \to 0$ a.e. on X by assumption. Hence $|g| \leq M$ a.e. on X.

Now, by Minkowski's inequality, we have

$$||f_n g_n - fg||_p \leq ||f_n g_n - fg_n||_p + ||fg_n - fg||_p$$

$$\leq ||g_n (f_n - f)||_p + ||f(g_n - g)||_p \quad (*)$$

Some more calculations:

$$||g_{n}(f_{n} - f)||_{p}^{p} = \int_{X} |g_{n}(f_{n} - f)|^{p} d\mu$$

$$\leq \int_{X} |g_{n}|^{p} ||f_{n} - f||^{p} d\mu$$

$$\leq M^{p} ||f_{n} - f||_{p}^{p}.$$

CHAPTER 10. L^P SPACES

128

Since $||f_n - f||_p \to 0$ by assumption, we have that $||g_n(f_n - f)||_p \to 0$. Let $h_n = fg_n - fg$ for every $n \in \mathbb{N}$. Then

$$|h_n| \le |f| \cdot |g_n - g| \le |f| (|g_n| + |g|) \le 2M|f|$$

 $|h_n|^p \le 2^p M^p |f|^p < \infty.$

Now, $|h_n|^p$ is bounded and $|h_n|^p \le |f|^p \cdot |g_n - g|^p \Rightarrow |h_n|^p \to 0$ (since $g_n \to g$ a.e.). By the Dominated Convergence Theorem, we have

$$0 = \int_X \lim_{n \to \infty} |h_n|^p d\mu = \lim_{n \to \infty} \int_X |h_n|^p d\mu$$
$$= \lim_{n \to \infty} \int_X |fg_n - fg|^p d\mu$$
$$= \lim_{n \to \infty} ||f(g_n - g)||_p^p.$$

From these results, (*) gives that

$$\lim_{n\to\infty} ||f_n g_n - fg||_p = 0. \quad \blacksquare$$

Problem 111

Let f be an extended real-valued Lebesgue measurable function on [0,1] such that $\int_{[0,1]} |f|^p d\mu < \infty$ for some $p \in [1,\infty)$. Let $q \in (1,\infty]$ be the conjugate of p. Let $a \in (0,1]$. Show that

$$\lim_{a \to 0} \frac{1}{a^{1/q}} \int_{[0,a]} |f| d\mu = 0.$$

Solution

 $\bullet \quad \underline{p=1}$

 $\overline{\text{Since } q} = \infty$, we have to show

$$\lim_{a\to 0} \int_0^a |f(s)| ds = 0 \quad \text{(Lebesgue integral = Riemann integral)}.$$

This is true since f is integrable so $\int_0^a |f(s)| ds$ is continuous with respect to a.

• $\frac{1 . We have$

$$\int_{0}^{a} |f(s)|ds = \int_{0}^{a} |f(s)|.1 ds$$

$$\leq \mu([0,a])^{1/q} \left(\int_{0}^{a} |f(s)|ds \right)^{1/p} \quad \text{(Problem 104)}$$

$$= a^{1/q} \left(\int_{0}^{a} |f(s)|ds \right)^{1/p}.$$

Hence,

$$\frac{1}{a^{1/q}} \int_0^a |f(s)| ds \le \left(\int_0^a |f(s)| ds \right)^{1/p} \quad (*)$$

Since |f| is integrable, we have (Problem 66)

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \mu([0, a]) < \delta \ \Rightarrow \ \int_{[0, a]} |f| d\mu < \varepsilon^p.$$

Equivalently,

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ 0 < a < \delta \Rightarrow \left(\int_0^a |f(s)| ds \right)^{1/p} < \varepsilon. \quad (**)$$

From (*) and (**) we obtain

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ 0 < a < \delta \Rightarrow \ \frac{1}{a^{1/q}} \int_0^a |f(s)| ds < \varepsilon.$$

That is,

$$\lim_{a \to 0} \frac{1}{a^{1/q}} \int_0^a |f(s)| ds = 0. \quad \blacksquare$$

Problem 112

Let (X, \mathcal{A}, μ) be a finite measure space. Let $f_n, f \in L^2(X)$ for all $n \in \mathbb{N}$ such that $\lim_{n\to\infty} f_n = f$ a.e. on X and $||f_n||_2 \leq M$ for all $n \in \mathbb{N}$. Show that $\lim_{n\to\infty} ||f_n - f||_1 = 0$.

Solution

We first claim: $||f||_2 \leq M$. Indeed, y Fatous' lemma, we have

$$||f||_2^2 = \int_X |f|^2 d\mu \le \liminf_{n \to \infty} \int_X |f_n|^2 d\mu \le M^2.$$

Since $\mu(X) < \infty$, we can use Egoroff's theorem:

$$\forall \varepsilon > 0, \ \exists A \in \mathcal{A} \ \text{with} \ \mu(A) < \varepsilon^2 \ \text{and} \ f_n \to f \ \text{uniformly on} \ X \setminus A.$$

Now we can write

$$||f_n - f||_1 = \int_X |f_n - f| d\mu = \int_A |f_n - f| d\mu + \int_{X \setminus A} |f_n - f| d\mu.$$

¹This is called the uniform continuity of the integral with respect to the measure μ .

CHAPTER 10. L^P SPACES

On $X \setminus A$, $f_n \to f$ uniformly, so for large n, we have $\int_{X \setminus A} |f_n - f| d\mu < \varepsilon$. On A we have

$$\int_{A} |f_{n} - f| d\mu = \int_{X} |f_{n} - f| \chi_{A} d\mu \leq \mu(A)^{1/2} . ||f_{n} - f||_{2}
\leq \mu(A)^{1/2} (||f_{n}||_{2} + ||f||_{2})
\leq 2M\varepsilon \text{ (since } \mu(A) < \varepsilon^{2}).$$

Thus, for any $\varepsilon > 0$, for large n, we have

$$||f_n - f||_1 \le (2M + 1)\varepsilon.$$

This tells us that $\lim_{n\to\infty} ||f_n - f||_1 = 0$.

Problem 113

Let (X, \mathcal{A}, μ) be a finite measure space and let $p, q \in (1, \infty)$ be conjugates. Let $f_n, f \in L^p(X)$ for all $n \in \mathbb{N}$ such that $\lim_{n \to \infty} f_n = f$ a.e. on X and $||f_n||_p \leq M$ for all $n \in \mathbb{N}$. Show that

- (a) $||f||_p \leq M$.
- (b) $\lim_{n\to\infty} ||f_n f||_p = 0.$
- (c) $\lim_{n\to\infty} \int_X f_n g d\mu = \int_X f g d\mu$ for every $g \in L^q(X)$. (d) $\lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$ for every $E \in \mathcal{A}$.

Hint:

- (a) and (b): See Problem 112.
- (c) Show $||f_n g fg||_1 \le ||f_n f||_p ||g||_q$. Then use (b).
- (d) Write

$$\int_{E} f_n g = \int_{Y} f_n g \mathbf{1}_E = \int_{Y} f_n (g \mathbf{1}_E).$$

Then use (c).

Problem 114

Let (X, \mathcal{A}, μ) be a measure space. Let f be a real-valued measurable function on X such that $f \in L^1(X) \cap L^\infty(X)$. Show that $f \in L^p(X)$ for every $p \in [1, \infty]$.

Hint:

If p = 1 or $p = \infty$, there is nothing to prove. Suppose $p \in (1, \infty)$. Let $f \in L^1(X) \cap L^\infty(X)$. Write

$$|f|^p = |f|^1 |f|^{p-1} \le |f|. \|f\|_\infty^{p-1}.$$

Integrate over X, then use the fact that $||f||_1$ and $||f||_{\infty}$ are finite.

www.MathVn.com - Math Vietnam

130

Problem 115

Let (X, \mathcal{A}, μ) be a measure space and let $0 < p_1 < p < p_2 \le \infty$. Show that

$$L^p(X) \subset L^{p_1}(X) + L^{p_2}(X),$$

that is, if $f \in L^p(X)$ then f = g + h for some $g \in L^{p_1}(X)$ and some $h \in L^{p_2}(X)$.

Solution

For any $f \in L^p(X)$, let $D = \{X : |f| \ge 1\}$. Let $g = f\mathbf{1}_D$ and $h = f\mathbf{1}_{D^c}$. Then

$$g + h = f\mathbf{1}_D + f\mathbf{1}_{D^c} = f(\underbrace{\mathbf{1}_D + \mathbf{1}_{D^c}}_{=\mathbf{1}_{D \cup D^c}}) = f$$
 (See Problem 37).

We want to show $g \in L^{p_1}(X)$ and $h \in L^{p_2}(X)$.

On D we have: $1 \le |f|^{p_1} \le |f|^p \le |f|^{p_2}$. It follows that

$$\int_X |g|^{p_1} d\mu = \int_D |f|^{p_1} d\mu \le \int_X |f|^p d\mu < \infty \text{ since } f \in L^p(X).$$

Hence, $g \in L^{p_1}(X)$.

On D^c we have : $|f|^{p_1} \ge |f|^p \ge |f|^{p_2}$. It follows that

$$\int_X |h|^{p_2} d\mu = \int_{D^c} |f|^{p_2} d\mu \le \int_X |f|^p d\mu < \infty.$$

Hence, $h \in L^{p_2}(X)$. This completes the proof.

Problem 116

Given a measure space (X, \mathfrak{A}, μ) . For 0 , show that

$$L^p(X)\cap L^q(X)\subset L^r(X).$$

Hint:

Let $D = \{X : |f| \ge 1\}$. On D we have $|f|^r \le |f|^q$, and on $X \setminus D$ we have $|f|^r \le |f|^p$.

Problem 117

Suppose $f \in L^4([0,1])$, $||f||_4 = C \ge 1$ and $||f||_2 = 1$. Show that

$$\frac{1}{C} \le ||f||_{4/3} \le 1.$$

Solution

First we note that 4 and 4/3 are conjugate. By assumption and by Hölder's inequality we have

$$1 = ||f||_{2}^{2} = \int_{[0,1]} |f|^{2} d\mu = \int_{[0,1]} |f| \cdot ||f| d\mu$$

$$\leq ||f||_{4} \cdot ||f||_{4/3}$$

$$\leq C \cdot ||f||_{4/3}.$$

This implies that $||f||_{4/3} \ge \frac{1}{C}$. (*). By Schwrarz's inequality we have

$$||f||_{4/3}^{4/3} = \int_{[0,1]} |f|^{4/3} d\mu = \int_{[0,1]} |f| \cdot |f|^{1/3} d\mu$$

$$\leq ||f||_2 \cdot ||f||_2^{1/3} = 1 \text{ since } ||f||_2 = 1.$$

Hence, $||f||_{4/3} \le 1$. (**) From (*) and (**) we obtain

$$\frac{1}{C} \le ||f||_{4/3} \le 1. \quad \blacksquare$$

Problem 118

Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) \in (0, \infty)$. Let $f \in L^{\infty}(X)$ and let $\alpha_n = \int_X |f|^n d\mu$ for $n \in \mathbb{N}$. Show that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = ||f||_{\infty}.$$

Solution

We first note that if $||f||_{\infty} = 0$, the problem does not make sense. Indeed,

$$||f||_{\infty} = 0 \implies f \equiv 0 \text{ a.e. on } X$$

 $\Rightarrow \alpha_n = 0, \forall n \in \mathbb{N}.$

Suppose that $0 < ||f||_{\infty} < \infty$. Then $\alpha_n > 0$, $\forall n \in \mathbb{N}$. We have

$$\alpha_{n+1} = \int_X |f|^{n+1} d\mu = \int_X |f|^n |f| d\mu$$

$$\leq ||f||_{\infty} \cdot \int_X |f|^n d\mu = ||f||_{\infty} \alpha_n.$$

This implies that

$$\frac{\alpha_{n+1}}{\alpha_n} \le \|f\|_{\infty}, \ \forall n \in \mathbb{N}.$$

$$\Rightarrow \limsup_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} \le \|f\|_{\infty}. \quad (*)$$

Notice that $\frac{n+1}{n}$ and n+1 are conjugate. Using again Hölder's inequality, we get

$$\alpha_{n} = \int_{X} |f|^{n} \cdot 1 \ d\mu \le \left(\int_{X} (|f|^{n})^{\frac{n+1}{n}} d\mu \right)^{\frac{n}{n+1}} \left(\int_{X} 1^{n+1} \right)^{\frac{1}{n+1}}$$

$$= \left(\int_{X} (|f|^{n+1}) d\mu \right)^{\frac{n}{n+1}} \cdot \mu(X)^{\frac{1}{n+1}}$$

$$= \alpha_{n+1}^{\frac{n}{n+1}} \cdot \mu(X)^{\frac{1}{n+1}}.$$

With a simple calculation we get

$$\frac{\alpha_{n+1}}{\alpha_n} \ge \alpha_{n+1}^{\frac{1}{n+1}} . \mu(X)^{-\frac{1}{n+1}}, \ \forall n \in \mathbb{N}.$$

Given any $\varepsilon > 0$, let $E = \{X : |f| > ||f||_{\infty} - \varepsilon\}$, then, by definition of $||f||_{\infty}$, we have $\mu(E) > 0$. Now,

$$\alpha_{n+1}^{\frac{1}{n+1}} = \left(\int_{X} (|f|^{n+1}) d\mu \right)^{\frac{1}{n+1}}$$

$$\geq \left(\int_{E} (|f|^{n+1}) d\mu \right)^{\frac{1}{n+1}}$$

$$> \mu(E)^{\frac{1}{n+1}} \cdot (\|f\|_{\infty} - \varepsilon).$$

It follows that

$$\frac{\alpha_{n+1}}{\alpha_n} \ge (\|f\|_{\infty} - \varepsilon) \cdot \left[\frac{\mu(E)}{\mu(X)}\right]^{\frac{1}{n+1}}.$$

$$\Rightarrow \liminf_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} \ge \|f\|_{\infty} - \varepsilon, \ \forall \varepsilon > 0$$

$$\Rightarrow \liminf_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} \ge \|f\|_{\infty}. \quad (**)$$

CHAPTER 10. L^P SPACES

134

From (*) and (**) we obtain

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = ||f||_{\infty}. \quad \blacksquare$$

Problem 119

Let (X, \mathcal{A}, μ) be a measure space and $p \in [1, \infty)$.

Let $f \in L^p(X)$ and $(f_n : n \in \mathbb{N}) \subset L^p(X)$. Suppose $\lim_{n\to\infty} ||f_n - f||_p = 0$. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $n \in \mathbb{N}$ we have

$$\int_{E} |f_{n}|^{p} d\mu < \varepsilon \quad \text{for every } E \in \mathcal{A} \quad \text{such that } \mu(E) < \delta.$$

Solution

By assumption we have $\lim_{n\to\infty} ||f_n - f||_p^p = 0$. Equivalently,

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \ n \ge N \Rightarrow \|f_n - f\|_p^p < \frac{\varepsilon}{2p+1}.$$
 (1)

From triangle inequality we have²

$$|f_n| \le |f_n - f| + |f|,$$

 $|f_n|^p \le (|f_n - f| + |f|)^p \le 2^p |f_n - f|^p + 2^p |f|^p.$

Integrating over $E \in \mathcal{A}$ and using (1), we get for $n \geq N$,

$$\int_{E} |f_{n}|^{p} d\mu \leq 2^{p} \int_{E} |f_{n} - f|^{p} d\mu + 2^{p} \int_{E} |f|^{p} d\mu$$

$$\leq 2^{p} ||f_{n} - f||_{p}^{p} + 2^{p} \int_{E} |f|^{p} d\mu$$

$$\leq 2^{p} \cdot \frac{\varepsilon}{2^{p+1}} + 2^{p} \int_{E} |f|^{p} d\mu$$

$$= \frac{\varepsilon}{2} + 2^{p} \int_{E} |f|^{p} d\mu. \qquad (2)$$

$$(a+b)^p \le 2^{p-1}(a^p + b^p).$$

²In fact, for $a, b \ge 0$ and $1 \le p < \infty$ we have

Since $|f|^p$ is integrable, by the uniform absolute continuity of integral (Problem 66) we have

$$\exists \delta_0 > 0: \ \mu(E) < \delta_0 \Rightarrow \int_E |f|^p d\mu < \frac{\varepsilon}{2^{p+1}}.$$

So, for $n \geq N$, from (2) we get

$$\exists \delta_0 > 0: \ \mu(E) < \delta_0 \Rightarrow \int_E |f_n|^p d\mu \le \frac{\varepsilon}{2} + 2^p \cdot \frac{\varepsilon}{2^{p+1}} = \varepsilon. \quad (3)$$

Similarly, all $|f_1|^p$, ..., $|f_{N-1}|^p$ are integrable, so we have

$$\exists \delta_j > 0: \ \mu(E) < \delta_j \Rightarrow \int_E |f_j|^p d\mu < \varepsilon, \ j = 1, ..., N - 1.$$
 (4)

Let $\delta = \min\{\delta_0, \delta_1, ..., \delta_{N-1}\}$. From (3) and (4) we get for every $n \in \mathbb{N}$,

$$\exists \delta > 0: \ \mu(E) < \delta \Rightarrow \int_{E} |f_n|^p d\mu < \varepsilon. \quad \blacksquare$$

Problem 120

Let f be a bounded real-valued integrable function on [0,1]. Suppose $\int_{[0,1]} x^n f d\mu = 0$ for n=0,1,2,... Show that f=0 a.e. on [0,1].

Solution

Fix an arbitrary function $\varphi \in C[0,1]$. By the Stone-Weierstrass theorem, there is a sequence (p_n) of polynomials such that $\|\varphi - p_n\|_{\infty} \to 0$ as $n \to \infty$. Then

$$\left| \int_{[0,1]} f \varphi d\mu \right| = \left| \int_{[0,1]} f(\varphi - p_n + p_n) d\mu \right|$$

$$\leq \int_{[0,1]} |f| |\varphi - p_n| d\mu + \left| \int_{[0,1]} f p_n d\mu \right|$$

$$\leq ||f||_1 ||\varphi - p_n||_{\infty} + \underbrace{\left| \int_{[0,1]} f p_n d\mu \right|}_{=0 \text{ by hypothesis}}$$

$$= ||f||_1 ||\varphi - p_n||_{\infty}.$$

Since $||f||_1 < \infty$ and $||\varphi - p_n||_{\infty} \to 0$, we have

$$\int_{[0,1]} f\varphi d\mu = 0, \ \forall \varphi \in C[0,1]. \quad (*)$$

CHAPTER 10. L^P SPACES

Now, since C[0,1] is dense in $L^1[0,1]$, there exists a sequence $(\varphi_n) \subset C[0,1]$ such

$$0 \leq \int_{[0,1]} f^2 d\mu = \left| \int_{[0,1]} f(f - \varphi_n + \varphi_n) d\mu \right|$$

$$\leq \int_{[0,1]} |f| |f - \varphi_n| d\mu + \left| \underbrace{\int_{[0,1]} f \varphi_n d\mu}_{=0 \text{ by } (*)} \right|$$

$$\leq ||f||_{\infty} ||f - \varphi_n||_{1}.$$

Since $||f||_{\infty} < \infty$ and $||f - \varphi_n||_1 \to 0$, we have

that $\|\varphi_n - f\|_1 \to 0$ as $n \to \infty$. Then

$$\int_{[0,1]} f^2 d\mu = 0.$$

Thus f = 0 a.e. on [0, 1].

Problem 121

Let (X, \mathcal{A}, μ) be a σ -finite measure space with $\mu(X) = \infty$.

(a) Show that there exists a disjoint sequence $(E_n : n \in \mathbb{N})$ in \mathcal{A} such that $\bigcup_{n \in \mathbb{N}} E_n = X$ and $\mu(E_n) \in [1, \infty)$ for every $n \in \mathbb{N}$.

(b) Show that there exists an extended real-valued measurable function f on X such that $f \notin L^1(X)$ and $f \in L^p(X)$ for all $p \in (1, \infty]$.

Solution

(a) Since (X, \mathcal{A}, μ) is a σ -finite measure space, there exists a sequence $(A_n : n \in \mathbb{N})$ of disjoint sets in \mathcal{A} such that

$$X = \bigcup_{n \in \mathbb{N}} A_n \text{ and } \mu(A_n) < \infty, \forall n \in \mathbb{N}.$$

By the countable additivity and by assumption, we have

$$\mu(X) = \sum_{n \in \mathbb{N}} \mu(A_n) = \infty.$$

It follows that

$$\exists k_1 \in \mathbb{N}: \ 1 \leq \sum_{n=1}^{k_1} \mu(A_n) = \mu(A_1 \cup ... \cup A_{k_1}) < \infty.$$

www.MathVn.com - Math Vietnam

136

Let $E_1 = A_1 \cup ... \cup A_{k_1}$ then we have

$$1 \le \mu(E_1) < \infty \text{ and } \mu(A_{k_1+1} \cup A_{k_1+2} \cup ...) = \mu(X \setminus E_1) = \infty.$$

Then there exists $k_2 \ge k_1 + 1$ such that

$$1 \le \mu(A_{k_1+1} \cup ... \cup A_{k_2}) < \infty.$$

Let $E_1 = A_{k_1+1} \cup ... \cup A_{k_2}$ then we have

$$1 \le \mu(E_2) < \infty \text{ and } E_1 \cap E_1 = \emptyset.$$

And continuing this process we are building a sequence $(E_n : n \in \mathbb{N})$ of disjoint subsets in \mathcal{A} satisfying

$$\bigcup_{n\in\mathbb{N}} E_n = \bigcup_{n\in\mathbb{N}} A_n = X \text{ and } \mu(E_n) \in [1,\infty), \ \forall n \in \mathbb{N}.$$

(b) Define a real-valued function f on $X = \bigcup_{n \in \mathbb{N}} A_n$ by

$$f = \sum_{n=1}^{\infty} \frac{\chi_{A_n}}{n\mu(A_n)}.$$

Then

$$f|_{A_1} = \frac{1}{1\mu(A_1)}, ..., f|_{A_n} = \frac{1}{n\mu(A_n)}, ...$$

Hence,

$$\int_X f d\mu = \sum_{n=1}^{\infty} \int_{A_n} f d\mu = \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

That is $f \notin L^1(X)$.

We also have

$$f^{p}|_{A_{1}} = \frac{1}{1^{p}\mu(A_{1})^{p}}, ..., f^{p}|_{A_{n}} = \frac{1}{n^{p}\mu(A_{n})^{p}}, ...(1$$

By integrating

$$\int_X f^p d\mu = \sum_{n=1}^{\infty} \int_{A_n} f^p d\mu$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^p \mu(A_n)^{p-1}}$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n^p} < \infty. \text{ since } \mu(A_n)^{p-1} \geq 1.$$

Thus, $f \in L^p(X)$.

138

Problem 122

Consider the space $L^p([0,1])$ where $p \in (1,\infty]$.

- (a) Prove that $||f||_p$ is increasing in p for any bounded measurable function f.
- (b) Prove that $||f||_p \to ||f||_\infty$ when $p \to \infty$.

Solution

(a)

• Suppose $1 . We want to show <math>||f||_p \le ||f||_{\infty}$. By definition, we have

$$|f| \le ||f||_{\infty} \ a.e. \ \text{on} \ [0,1].$$

Therefore,

$$|f|^p \le ||f||_{\infty}^p \ a.e. \text{ on } [0,1].$$

$$\Rightarrow \int_{[0,1]} |f|^p d\mu \le \int_{[0,1]} ||f||_{\infty}^p d\mu$$

$$\Rightarrow ||f||_p^p \le ||f||_{\infty}^p \ \mu([0,1])$$

$$\Rightarrow ||f||_p \le ||f||_{\infty}.$$

• Suppose $1 < p_1 < p_2 < \infty$. We want to show $||f||_{p_1} \le ||f||_{p_2}$. Notice that

$$\frac{p_1}{p_2} + \frac{p_2 - p_1}{p_2} = 1$$
 or $\frac{1}{p_2/p_1} + \frac{1}{p_2/(p_2 - p_1)} = 1$.

By Hölder's inequality we have

$$||f||_{p_{1}}^{p_{1}} = \int_{[0,1]} |f|^{p_{1}} d\mu = \int_{[0,1]} |f|^{p_{1}} \cdot 1 \cdot d\mu$$

$$\leq ||f|^{p_{1}} ||_{p_{2}/p_{1}} \cdot ||f||_{p_{2}/(p_{2}-p_{1})}$$

$$= ||f||_{p_{2}/p_{1}}^{p_{1}} \cdot (*)$$

Now,

$$||f||_{p_2/p_1}^{p_1} = \left(\int_{[0,1]} |f|^{p_1 \cdot \frac{p_2}{p_1}} d\mu \right)^{p_1/p_2}$$
$$= \left(\int_{[0,1]} |f|^{p_2} d\mu \right)^{p_1 \cdot \frac{1}{p_2}} = ||f||_{p_2}^{p_1}.$$

Finally, (*) implies that $||f||_{p_1} \leq ||f||_{p_2}$. In both cases we have

$$1 < p_1 < p_2 \Longrightarrow ||f||_{p_1} \le ||f||_{p_2}.$$

That is $||f||_p$ is increasing in p.

(b) By part (a) we get $||f||_p \leq ||f||_{\infty}$. Then

$$\limsup_{p \to \infty} ||f||_p \le ||f||_{\infty}. \quad (i)$$

Given any $\varepsilon > 0$, let $E = \{X : |f| > ||f||_{\infty} - \varepsilon\}$. Then $\mu(E) > 0$ and

$$||f||_p^p \ge \int_E |f|^p d\mu > (||f||_\infty - \varepsilon)^p \mu(E).$$

$$\Rightarrow ||f||_p \ge (||f||_\infty - \varepsilon)\mu(E)^{1/p}$$

$$\Rightarrow \liminf_{p \to \infty} ||f||_p \ge ||f||_\infty - \varepsilon, \ \forall \varepsilon > 0 \ \text{(since } \lim_{p \to \infty} \mu(E)^{1/p} = 1).$$

$$\Rightarrow \liminf_{p \to \infty} ||f||_p \ge ||f||_\infty. \quad (ii)$$

From (i) and (ii) we obtain

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}. \quad \blacksquare$$

* * **

APPENDIX

The L^p Spaces for 0

Let (X, \mathcal{A}, μ) be a measure space and $p \in (0, 1)$. It is easy to check that $L^p(X)$ is a linear space.

Exercise 1. If $||f||_p := (\int_X |f|^p d\mu)^{1/p}$ and $0 , then <math>||.||_p$ is not a norm on X.

Show that $\|.\|_p$ does not satisfy the triangle inequality:

Take X=[0,1] with the Lebesgue measure on it. Let $f=\mathbf{1}_{[0,\frac{1}{2})}$ and $g=\mathbf{1}_{[\frac{1}{2},1)}$. Then show that

$$||f + g||_p = 1.$$

and that

$$||f||_p = 2^{-\frac{1}{p}}$$
 and $||g||_p = 2^{-\frac{1}{p}}$.

It follows that

$$||f + g||_p > ||f||_p + ||g||_p.$$

Exercise 2. If $\alpha, \beta \in \mathbb{C}$ and 0 , then

$$|\alpha + \beta|^p \le |\alpha|^p + |\alpha|^p.$$

Hint:

Consider the real-valued function $\varphi(t)=(1+t)^p-1-t^p,\ t\in[0,\infty)$. Show that it is strictly decreasing on $[0,\infty)$. Then take $t=\frac{|\beta|}{|\alpha|}>0$.

CHAPTER 10. L^P SPACES

140

Exercise 3. For $0 , <math>||.||_p$ is not a norm. However

$$\rho_p(f,g) := \int_X |f - g|^p d\mu, \quad f, g \in L^p(X)$$

is a metric on $L^p(X)$.

Proof.

We prove only the triangle inequality. For $f, g, h \in L^p(X)$, we have

$$\rho_p(f,g) = \int_X |f - g|^p d\mu$$

$$= \int_X |(f - h) + (h - g)|^p d\mu$$

$$\leq \int_X (|f - h| + |h - g|)^p d\mu$$

$$\leq \int_X |f - h|^p d\mu + \int_X |h - g|^p d\mu \text{ (by Exercise 2)}$$

$$= \rho_p(f, h) + \rho_p(h, g). \quad \blacksquare$$

* * **

Chapter 11

Integration on Product Measure Space

1. Product measure spaces

Definition 32 (Product measure)

Given n measure spaces $(X_1, A_1, \mu_1), ..., (X_n, A_n, \mu_n)$. Consider the product measurable space $(X_1 \times ... \times X_n, \sigma(A_1 \times ... \times A_n))$. A measure μ on $\sigma(A_1 \times ... \times A_n)$ such that

$$\mu(E) = \mu_1(A_1)...\mu_n(A_n)$$
 for $E = A_1 \times ... \times A_n \in A_1 \times ... \times A_n$

with the convention $\infty.0 = 0$ is called a product measure of $\mu_1, ..., \mu_n$ and we write

$$\mu = \mu_1 \times ... \times \mu_n.$$

Theorem 27 (Existence and uniqueness)

For n arbitrary measure spaces $(X_1, \mathcal{A}_1, \mu_1), ..., (X_n, \mathcal{A}_n, \mu_n)$, a product measure space $(X_1 \times ... \times X_n, \sigma(\mathcal{A}_1 \times ... \times \mathcal{A}_n), \mu_1 \times ... \times \mu_n)$ exists. Moreover, if the n measure spaces are all σ -finite, then the product measure space is unique.

2. Integration

Definition 33 (Sections and section functions)

Let $(X \times Y, \sigma(A \times B), \mu \times \nu)$ be the product of two σ -finite measure spaces (X, A, μ) and (Y, B, ν) . Let $E \subset X \times Y$, and f be an extended real-valued function on E.

(a) For $x \in X$, the set $E(x, .) := \{y \in Y : (x, y) \in E\}$ is called the x-section of E.

For $y \in Y$, the set $E(.,y) := \{x \in X : (x,y) \in E\}$ is called the y-section of E.

(b) For $x \in X$, the function f(x, .) defined on E(x, .) is called the x-section of f.

For $y \in Y$, the function f(.,y) defined on E(.,y) is called the y-section of f.

Proposition 24 Let $(X \times Y, \sigma(A \times B), \mu \times \nu)$ be the product of two σ -finite measure spaces (X, A, μ) and (Y, \mathcal{B}, ν) . For every $E \in \sigma(A \times B)$, $\nu(E(x, \cdot))$ is a A-measurable function of $x \in X$ and $\mu(E(\cdot, y))$ is a \mathcal{B} -measurable function of $y \in Y$. Furthermore, we have

$$(\mu \times \nu)(E) = \int_X \nu(E(x,.))\mu(dx) = \int_Y \mu(E(.,y))\nu(dy).$$

Theorem 28 (Tonelli's Theorem)

Let $(X \times Y, \sigma(A \times B), \mu \times \nu)$ be product measure space of two σ -finite measure spaces. Let f be a non-negative extended real-valued measurable on $X \times Y$. Then

- (a) $F^1(x) := \int_V f(x, .) d\nu$ is a A-measurable function of $x \in X$.
- (b) $F^2(y) := \int_X f(.,y) d\mu$ is a \mathcal{B} -measurable function of $y \in Y$.
- (c) $\int_{X\times Y} f d(\mu \times \nu) = \int_X F^1 d\mu = \int_Y F^2 d\nu$, that is,

$$\int_{X\times Y} f d(\mu\times\nu) = \int_X \left[\int_Y f(x,.) d\nu\right] d\mu = \int_Y \left[\int_X f(.,y) d\mu\right] d\nu.$$

Theorem 29 (Fubini's Theorem)

Let $(X \times Y, \sigma(A \times B), \mu \times \nu)$ be product measure space of two σ -finite measure spaces. Let f be a $\mu \times \nu$ -integrable extended real-valued measurable function on $X \times Y$. Then

- (a) The \mathcal{B} -measurable function f(x,.) is ν -integrable on Y for μ -a.e. $x \in X$ and the \mathcal{A} -measurable function f(.,y) is μ -integrable on X for ν -a.e. $y \in Y$.
- (b) The function $F^1(x) := \int_Y f(x,.) d\nu$ is defined for μ -a.e. $x \in X$, A-measurable and μ -integrable on X. The function $F^2(y) := \int_X f(.,y) d\nu$ is defined for ν -a.e. $y \in X$, B-measurable and ν -integrable on Y.
- (c) We have the equalities: $\int_{X\times Y} fd(\mu\times\nu) = \int_X F^1d\mu = \int_Y F^2d\nu$, that is,

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x, .) d\nu \right] d\mu = \int_Y \left[\int_X f(., y) d\mu \right] d\nu.$$

* * **

Problem 123

Consider the product measure space $(\mathbb{R} \times \mathbb{R}, \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}), \mu_L \times \mu_L)$. Let $D = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y\}$. Show that

$$D \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$$
 and $(\mu_L \times \mu_L)(D) = 0$.

Solution

Let $\lambda = \mu_L \times \mu_L$. Let $D_0 = \{(x,y) \in [0,1] \times [0,1] : x = y\}$. For each $n \in \mathbb{Z}$ let

 $D_n = \{(x,y) \in [n,n+1] \times [n,n+1] : x = y\}$. Then, by translation invariance of Lebesgue measure, we have

$$\lambda(D_0) = \lambda(D_n), \ \forall n \in \mathbb{N}.$$

and $D = \bigcup_{n \in \mathbb{Z}} D_n.$

To solve the problem, it suffices to prove $D_0 \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$ and $\lambda(D_0) = 0$. For each $n \in \mathbb{N}$, divide [0,1] into 2^n equal subintervals as follows:

$$I_{n,1} = \left[0, \frac{1}{2^n}\right], I_{n,2} = \left[\frac{1}{2^n}, \frac{2}{2^n}\right], ..., I_{n,2^n} = \left[\frac{2^n - 1}{2^n}, 1\right].$$

Let $S_n = \bigcup_{k=1}^{2^n} (I_{n,k} \times I_{n,k})$, then $D_0 = \lim_{n \to \infty} S_n$. Now, for each $n \in \mathbb{N}$ and for $k = 1, 2, ..., 2^n$, $I_{n,k} \in \mathcal{B}_{\mathbb{R}}$. Therefore,

$$I_{n,k} \times I_{n,k} \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$$
 and so $S_n \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$.

Hence, $D_0 \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$.

It is clear that (S_n) is decreasing (make a picture yourself), so

$$D_0 = \lim_{n \to \infty} S_n = \bigcap_{n=1}^{\infty} S_n.$$

And we have

$$\lambda(S_n) = \sum_{k=1}^{2^n} \lambda(I_{n,k} \times I_{n,k})$$
$$= \sum_{k=1}^{2^n} \frac{1}{2^n} \cdot \frac{1}{2^n} = 2^n \cdot \frac{1}{2^{2n}} = \frac{1}{2^n}.$$

It follows that

$$\lambda(D_0) \le \lambda(S_n) = \frac{1}{2^n}, \ \forall n \in \mathbb{N}.$$

Thus, $\lambda(D_0) = 0$.

Problem 124

Consider the product measure space $(\mathbb{R} \times \mathbb{R}, \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}), \mu_L \times \mu_L)$. Let f be a real-valued function of bounded variation on [a,b]. Consider the graph of f:

$$G = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = f(x) \text{ for } x \in \mathbb{R}\}.$$

Show that $G \in \sigma(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}})$ and $(\mu_L \times \mu_L)(G) = 0$.

Hint:

Partition of [a, b]:

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}.$$

Elementary rectangles:

$$R_{n,k} = [x_{k-1}, x_k] \times [m_k, M_k], \quad k = 1, ..., n,$$

where

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 and $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$.

Let

$$R_n = \bigcup_{k=1}^n R_{n,k}$$
 and $||P|| = \max_{1 \le k \le n} (x_k - x_{k-1}).$

Let $\lambda = \mu_L \times \mu_L$. Show that

$$\lambda(R_n) \le ||P|| \sum_{k=1}^n (M_k - m_k) \le ||P|| V_a^b(f),$$

Problem 125

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be the measure spaces given

$$X = Y = [0, 1]$$

 $\mathcal{A} = \mathcal{B} = \mathcal{B}_{[0,1]}$, the σ -algebra of the Borel sets in [0,1],

 $\mu = \mu_L$ and ν is the counting measure.

Consider the product measurable space $(X \times Y, \sigma(A \times B))$ and a subset in it defined by $E = \{(x, y) \in X \times Y : x = y\}$. Show that

(a)
$$E \in \sigma(\mathcal{A} \times \mathcal{B}),$$

(b)
$$\int_X \left(\int_Y \chi_E d\nu \right) d\mu \neq \int_Y \left(\int_X \chi_E d\mu \right) d\nu.$$

Why is Tonelli's theorem not applicable?

Solution

(a) For each $n \in \mathbb{N}$, divide [0,1] into 2^n equal subintervals as follows:

$$I_{n,1} = \left[0, \frac{1}{2^n}\right], I_{n,2} = \left[\frac{1}{2^n}, \frac{2}{2^n}\right], ..., I_{n,2^n} = \left[\frac{2^n - 1}{2^n}, 1\right].$$

Let $S_n = \bigcup_{k=1}^{2^n} (I_{n,k} \times I_{n,k})$. It is clear that (S_n) is decreasing, so

$$E = \lim_{n \to \infty} S_n = \bigcap_{n=1}^{\infty} S_n.$$

Now, for each $n \in \mathbb{N}$ and for $k = 1, 2, ..., 2^n$, $I_{n,k} \in \mathcal{B}_{[0,1]}$. Therefore,

$$I_{n,k} \times I_{n,k} \in \sigma(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]})$$
 and so $S_n \in \sigma(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]})$.

Hence, $E \in \sigma(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]})$.

(b) For any $x \in X$, $\mathbf{1}_{E}(x,.) = \mathbf{1}_{\{x\}}(.)$. Therefore,

$$\int_{Y} \mathbf{1}_{E} d\nu = \int_{[0,1]} \mathbf{1}_{\{x\}} d\nu = \nu \{x\} = 1.$$

Hence,

$$\int_X \left(\int_Y \mathbf{1}_E d\nu \right) d\mu = \int_{[0,1]} 1 d\mu = 1. \quad (*)$$

On the other hand, for every $y \in Y$, $\mathbf{1}_{E}(.,y) = \mathbf{1}_{\{y\}}(.)$. Therefore,

$$\int_X \mathbf{1}_E d\mu = \int_{[0,1]} \mathbf{1}_{\{y\}} d\mu = \mu\{y\} = 0.$$

Hence,

$$\int_{Y} \left(\int_{X} \mathbf{1}_{E} d\mu \right) d\nu = \int_{[0,1]} 0 d\mu = 0. \quad (**)$$

Thus, from (*) and (**) we get

$$\int_X \left(\int_Y \mathbf{1}_E d\nu \right) d\mu \neq \int_Y \left(\int_X \mathbf{1}_E d\mu \right) d\nu.$$

Tonelli's theorem requires that the two measures must be σ -finite. Here, the counting measure ν is not σ -finite, so Tonelli's theorem is not applicable.

Question: Why the counting measure on [0,1] is not σ -finite?

Problem 126

Suppose g is a Lebesgue measurable real-valued function on [0,1] such that the function f(x,y) = 2g(x) - 3g(y) is Lebesgue integrable over $[0,1] \times [0,1]$. Show that g is Lebesgue integrable over [0,1].

Solution

By Fubini's theorem we have

$$\int_{[0,1]\times[0,1]} f(x,y)d(\mu_L(x) \times \mu_L(y)) = \int_0^1 \int_0^1 f(x,y)dxdy
= \int_0^1 \int_0^1 [2g(x) - 3g(y)]dxdy
= \int_0^1 \int_0^1 2g(x)dxdy - \int_0^1 \int_0^1 3g(y)dxdy
= 2 \int_0^1 g(x) \left(\int_0^1 1.dy \right) dx - 3 \int_0^1 g(y) \left(\int_0^1 1.dx \right) dy
= 2 \int_0^1 g(x).1.dx - 3 \int_0^1 g(y).1.dy
= 2 \int_0^1 g(x)dx - 3 \int_0^1 g(y)dy
= -\int_0^1 g(x)dx.$$

Since f(x, y) is Lebesgue integrable over $[0, 1] \times [0, 1]$:

$$\left| \int_{[0,1]\times[0,1]} f(x,y) d(\mu_L(x) \times \mu_L(y)) \right| < \infty.$$

Therefore,

$$\left| \int_0^1 g(x) dx \right| < \infty.$$

That is g is Lebesgue (Riemann) integrable over [0,1].

Problem 127

Let (X, \mathfrak{M}, μ) be a complete measure space and let f be a non-negative integrable function on X. Let $b(t) = \mu\{x \in X : f(x) \geq t\}$. Show that

$$\int_X f d\mu = \int_0^\infty b(t) dt.$$

Solution

Define $F:[0,\infty)\times X\to\mathbb{R}$ by

$$F(t,x) = \begin{cases} 1 & \text{if } 0 \le t \le f(x) \\ 0 & \text{if } t > f(x). \end{cases}$$

If $E_t = \{x \in X : f(x) \ge t\}$, then $F(t, x) = \mathbf{1}_{E_t}(x)$. We have

$$\int_0^\infty F(t,x)dt = \int_0^{f(x)} F(t,x)dt + \int_{f(x)}^\infty F(t,x)dt = f(x) + 0 = f(x).$$

By Fubini's theorem we have

$$\int_{X} f d\mu = \int_{X} \left(\int_{0}^{f(x)} dt \right) dx$$

$$= \int_{X} \left(\int_{0}^{\infty} F(t, x) dt \right) dx$$

$$= \int_{0}^{\infty} \left(\int_{X} F(t, x) dx \right) dt$$

$$= \int_{0}^{\infty} \left(\int_{X} \mathbf{1}_{E_{t}}(x) dx \right) dt$$

$$= \int_{0}^{\infty} b(t) dt. \text{ (since } \mu(E_{t}) = b(t) \text{).} \quad \blacksquare$$

Problem 128

Consider the function $u:[0,1]\times[0,1]\to\mathbb{R}$ defined by

$$u(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & for \ (x,y) \neq (0,0), \\ 0 & for \ (x,y) = (0,0). \end{cases}$$

(a) Calculate

$$\int_0^1 \left(\int_0^1 u(x,y) dy \right) dx \quad and \quad \int_0^1 \left(\int_0^1 u(x,y) dx \right) dy.$$

Observation?

(b) Check your observation by using polar coordinates to show that

$$\iint_{D} |u(x,y)| dx dy = \infty,$$

that is, u is not integrable. Here D is the unit disk.

Answer.

(a) $\frac{\pi}{4}$ and $-\frac{\pi}{4}$.

Problem 129

Let

$$I[0,1], \ \mathbb{R}_+ = [0,\infty),$$

$$f(u,v) = \frac{1}{1+u^2v^2},$$

$$g(x,y,t) = f(x,t)f(y,t), \ (x,y,t) \in I \times I \times \mathbb{R}_+ := J.$$

(a) Show that g is integrable on J (equipped with Lebesgue measure). Using Tonelli's theorem on $\mathbb{R}_+ \times I \times I$ show that

$$A=:\int_{J}gdtdxdy=\int_{\mathbb{R}_{+}}\left(\frac{\arctan t}{t}\right)^{2}dt.$$

(b) Using Tonelli's theorem on $I \times I \times \mathbb{R}_+$ show that

$$A = \frac{\pi}{2} \int_{I \times I} \frac{1}{x + y} \, dx dy.$$

(c) Using Tonelli's theorem again show that $A = \pi \ln 2$.

Solution

(a) It is clear that g is continuous on \mathbb{R}^3 , so measurable. Using Tonelli's theorem on $\mathbb{R}_+ \times I \times I$ we have

$$A = \int_{\mathbb{R}_{+}} \left(\int_{I \times I} f(x,t) f(y,t) dx dy \right) dt$$

$$= \int_{\mathbb{R}_{+}} \left(\int_{I} f(x,t) \left(\int_{I} f(y,t) dy \right) dx \right) dt$$

$$= \int_{\mathbb{R}_{+}} \left(\left(\int_{I} \frac{1}{1+x^{2}t^{2}} dx \right) \left(\int_{I} \frac{1}{1+y^{2}t^{2}} dy \right) \right) dt$$

$$= \int_{\mathbb{R}_{+}} \left(\int_{I} \frac{1}{1+x^{2}t^{2}} dx \right)^{2} dt$$

$$= \int_{\mathbb{R}_{+}} \left(\frac{\arctan t}{t} \right)^{2} dt.$$

Note that for all $t \in \mathbb{R}_+$, $0 < \arctan t < \frac{\pi}{2}$ and $\arctan t \sim t$ as $t \to 0$, so

$$A = \int_{\mathbb{R}_+} \left(\frac{\arctan t}{t} \right)^2 dt < \infty.$$

Thus g is integrable on J.

(b) We first decompose g(x, y, t) = f(x, t)f(y, t) into simple elements:

$$g(x,y,t) = f(x,t)f(y,t) = \frac{1}{1+x^2t^2} \cdot \frac{1}{1+y^2t^2}$$
$$= \frac{1}{x^2-y^2} \left[\frac{x^2}{1+x^2t^2} - \frac{y^2}{1+y^2t^2} \right].$$

Using Tonelli's theorem on $I \times I \times \mathbb{R}_+$ we have

$$A = \int_{I \times I} \left(\int_{\mathbb{R}_{+}} \frac{1}{x^{2} - y^{2}} \left[\frac{x^{2}}{1 + x^{2}t^{2}} - \frac{y^{2}}{1 + y^{2}t^{2}} \right] dt \right) dx dy$$

$$= \int_{I \times I} \frac{1}{x^{2} - y^{2}} \left(\int_{\mathbb{R}_{+}} \left[\frac{x}{1 + s^{2}} - \frac{y}{1 + s^{2}} \right] ds \right) dx dy$$

$$= \int_{I \times I} \frac{1}{x + y} \left(\int_{0}^{\infty} \frac{ds}{1 + s^{2}} \right) dx dy$$

$$= \frac{\pi}{2} \int_{I \times I} \frac{1}{x + y} dx dy.$$

(c) Using (b) and using Tonelli's theorem again we get

$$A = \frac{\pi}{2} \int_0^1 \left(\int_0^1 \frac{1}{x+y} \, dy \right) dx$$
$$= \frac{\pi}{2} \int_0^1 [\ln(x+1) - \ln x] dx$$
$$= \frac{\pi}{2} [(x+1)\ln(x+1) - x \ln x]_{x=0}^{x=1} = \pi \ln 2.$$

www.MATHVN.com - Anh Quang Le, PhD

150 CHAPTER 11. INTEGRATION ON PRODUCT MEASURE SPACE

www.MATHVN.com - Anh Quang Le, PhD

Chapter 12

Some More Real Analysis Problems

Problem 130

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive. Consider a sequence $(A_n)_{n\in\mathbb{N}}$ in \mathcal{M} such that

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty.$$

Prove that

$$\mu\left(\bigcap_{n=1}^{\infty}\bigcup_{k\geq n}A_k\right)=0.$$

Hint

Let $B_n = \bigcup_{k \geq n} A_k$. Then (B_n) is a decreasing sequence in \mathcal{M} with

$$\mu(B_1) = \sum_{n=1}^{\infty} \mu(A_n) < \infty.$$

Problem 131

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive. Prove that (X, \mathcal{M}, μ) is σ -finite if and only if there exists a function $f \in L^1(X)$ and f(x) > 0, $\forall x \in X$.

Hint:

• Consider the function

$$f(x) = \sum_{n=1}^{\infty} \frac{\mathbf{1}_{X_n}(x)}{2^n \left[\mu(X_n) + 1 \right]}.$$

It is clear that f(x) > 0, $\forall x \in X$. Just show that f is integrable on X.

• Conversely, suppose that there exists $f \in L^1(X)$ and f(x) > 0, $\forall x \in X$. For every $n \in \mathbb{N}$ set

$$X_n = \left\{ x \in X : \ f(x) > \frac{1}{n+1} \right\}.$$

Show that

$$\bigcup_{n=1}^{\infty} X_n = X \text{ and } \mu(X_n) \le (n+1) \int_X f d\mu.$$

Problem 132

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive. Let $f: X \to \mathbb{R}_+$ be a measurable function such that $\int_X f d\mu < \infty$.

- (a) Let $N = \{x \in X : f(x) = \infty\}$. Show that $N \in \mathcal{M}$ and $\mu(N) = 0$.
- (b) Given any $\varepsilon > 0$, show that there exists $\alpha > 0$ such that

$$\int_{E} f d\mu < \varepsilon \quad for \ any \quad E \in \mathcal{M} \quad with \quad \mu(E) \le \alpha.$$

Hint

(a) $N = f^{-1}(\{\infty\})$ and $\{\infty\}$ is closed. For every $n \in \mathbb{N}, \ n\mathbf{1}_N < f$.

(b) Write

$$0 \le \int_E f d\mu = \int_{E \cap N^c} f d\mu.$$

For every $n \in \mathbb{N}$ set $g_n := f\mathbf{1}_{f>n}f\mathbf{1}_{N^c}$. Show that $g_n(x) \to 0$ for all $x \in X$.

Problem 133

Let $\varepsilon > 0$ be arbitrary. Construct an open set $\Omega \subset \mathbb{R}$ which is dense in \mathbb{R} and such that $\mu_L(\Omega) < \varepsilon$.

Hint:

Write $\mathbb{Q} = \{x_1, x_2, ...\}$. For each $n \in \mathbb{N}$ let

$$I_n := \left(x_n - \frac{\varepsilon}{2^{n+2}}, x_n + \frac{\varepsilon}{2^{n+2}}\right).$$

Then the I_n 's are open and $\Omega := \bigcup_{n=1}^{\infty} I_n \supset \mathbb{Q}$.

Problem 134

Let (X, \mathcal{M}, μ) be a measure space. Suppose μ is positive and $\mu(X) = 1$ (so (X, \mathcal{M}, μ) is a probability space). Consider the family

$$\mathcal{T} := \{ A \in \mathcal{M} : \ \mu(A) = 0 \ or \ \mu(A) = 1 \}.$$

Show that T is a σ -algebra.

Hint:

Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{M}$. Let $A=\bigcup_{n\in\mathbb{N}}A_n$. If $\mu(A)=0$, then $A\in\mathcal{T}$. If $\mu(A_{n_0})=1$ for some $n_0\in\mathbb{N}$, then

$$1 = \mu(A_{n_0}) \le \mu(A) \le \mu(X) = 1.$$

Problem 135

For every $n \in \mathbb{N}$, consider the functions f_n and g_n defined on \mathbb{R} by

$$f_n(x) = \frac{n^{\alpha}}{(|x| + n)^{\beta}}$$
 where $\alpha, \beta \in \mathbb{R}$ and $\beta > 1$
 $g_n(x) = n^{\gamma} e^{-n|x|}$ where $\gamma \in \mathbb{R}$.

- (a) Show that $f_n \in L^p(\mathbb{R})$ and compute $||f_n||_p$ for $1 \leq p \leq \infty$.
- (b) Show that $g_n \in L^p(\mathbb{R})$ and compute $||g_n||_p$ for $1 \leq p \leq \infty$.
- (c) Use (a) and (b) to show that, for $1 \le p < q \le \infty$, the topologies induced on $L^p \cap L^q$ by L^p and L^q are not comparable.

Hint:

(a)

• For $1 \le p < \infty$ we have

$$||f_n||_p = 2^{\frac{1}{p}} (\beta p - 1)^{-\frac{1}{p}} n^{\alpha - \beta + \frac{1}{p}}.$$

• For $p = \infty$ we have

$$||f_n||_{\infty} = \lim_{p \to \infty} ||f_n||_p = n^{\alpha - \beta}.$$

(b)

• For $p = \infty$ we have

$$||g_n||_{\infty} = n^{\gamma}.$$

154

• For $1 \le p < \infty$ we have

$$||g_n||_p = 2^{\frac{1}{p}} n^{\gamma - \frac{1}{p}} p^{-\frac{1}{p}}.$$

(c) If the topologies induced on $L^p \cap L^q$ by L^p and L^q are comparable, then, for $\varphi_n \in L^p \cap L^q$, we must have

(*)
$$\lim_{n \to \infty} \|\varphi_n\|_p = 0 \Longrightarrow \lim_{n \to \infty} \|\varphi_n\|_q = 0.$$

Find an example which shows that the above assumption is not true. For example:

$$\varphi_n = n^{-\gamma + \frac{1}{q}} g_n.$$

Problem 136

- (a) Show that any non-empty open set in \mathbb{R}^n has strictly positive Lebesgue measure.
- (b) Is the assertion in (a) true for closed sets in \mathbb{R}^n ?

Hint:

(a) For any $\varepsilon > 0$, consider the open ball in \mathbb{R}^n

$$B_{2\varepsilon}(0) = \{x = (x_1, ..., x_n) : x_1^2 + ... + x_n^2 < 4\varepsilon^2\}.$$

For each $n \in \mathbb{R}$, let $I_n(0) := \left[-\frac{\varepsilon}{\sqrt{n}}, \frac{\varepsilon}{\sqrt{k}} \right)$. Show that

$$I_{\varepsilon}(0) := \underbrace{I_n(0) \times ... \times I_n(0)}_{n} \subset B_{2\varepsilon}(0).$$

(b) No.

Problem 137

- (a) Construct an open and unbounded set in \mathbb{R} with finite and strictly positive Lebesgue measure.
- (b) Construct an open, unbounded and connected set in \mathbb{R}^2 with finite and strictly positive Lebesque measure.
- (c) Can we find an open, unbounded and connected set in \mathbb{R} with finite and strictly positive Lebesgue measure?

Hint:

(a) For each k = 0, 1, 2, ... let

$$I_k = \left(k - \frac{1}{2^k}, k + \frac{1}{2^k}\right).$$

Then show that $I = \bigcup_{k=0}^{\infty} I_k$ satisfies the question.

(b) For each k = 1, 2, ... let

$$B_k = \left(-\frac{1}{2^k}, \frac{1}{2^k}\right) \times (-k, k).$$

Then show that $B = \bigcup_{k=0}^{\infty} B_k$ satisfies the question. (c) No. Why?

Problem 138

Given a measure space (X, \mathcal{A}, μ) . A sequence (f_n) of real-valued measurable functions on a set $D \in \mathcal{A}$ is said to be a Cauchy sequence in measure if given any $\varepsilon > 0$, there is an N such that for all $n, m \geq N$ we have

$$\mu\{x: |f_n(x) - f_m(x)| \ge \varepsilon\} < \varepsilon.$$

(a) Show that if $f_n \xrightarrow{\mu} f$ on D, then (f_n) is a Cauchy sequence in measure on D. (b) Show that if (f_n) is a Cauchy sequence in measure, then there is a function f to which the sequence (f_n) converges in measure.

Hint:

(a) For any $\varepsilon > 0$, there exists N > 0 such that for $n, m \geq N$ we have

$$\mu\{D: |f_m - f_n| \ge \varepsilon\} \le \mu\{D: |f_m - f| \ge \frac{\varepsilon}{2}\} + \mu\{D: |f_n - f| \ge \frac{\varepsilon}{2}\}.$$

(b) By definition,

for
$$\delta = \frac{1}{2}$$
, $\exists n_1 \in \mathbb{N} : \mu \Big\{ D : |f_{n_1+p} - f_{n_1}| \ge \frac{1}{2} \Big\} < \frac{1}{2} \text{ for all } p \in \mathbb{N}.$

In general,

for
$$\delta = \frac{1}{2^k}$$
, $\exists n_k \in \mathbb{N}$, $n_k > n_{k-1}$: $\mu \Big\{ D : |f_{n_k+p} - f_{n_k}| \ge \frac{1}{2^k} \Big\} < \frac{1}{2^k}$ for all $p \in \mathbb{N}$.

Since $n_{k+1} = n_k + p$ for some $p \in \mathbb{N}$, so we have

$$\mu \Big\{ D: |f_{n_{k+1}} - f_{n_k}| \ge \frac{1}{2^k} \Big\} < \frac{1}{2^k} \text{ for } k \in \mathbb{N}.$$

Let $g_k = f_{n_k}$. Show that (g_k) converges a.e. on D. Let $D_c := \{x \in D : \lim_{k \to \infty} g_k(x) \in \mathbb{R}\}$. Define f by $f(x) = \lim_{k \to \infty} g_k(x)$ for $x \in D_c$ and f(x) = 0 for $x \in D \setminus D_c$. Then show that $g_k \xrightarrow{\mu} f$ on D. Finally show that $f_n \xrightarrow{\mu} f$ on D.

CHAPTER 12. SOME MORE REAL ANALYSIS PROBLEMS

Problem 139

Check whether the following functions are Lebesgue integrable:

(a)
$$u(x) = \frac{1}{x}, x \in [1, \infty)$$

(a)
$$u(x) = \frac{1}{x}, x \in [1, \infty).$$

(b) $v(x) = \frac{1}{\sqrt{x}}, x \in (0, 1].$

Hint:

(a) u(x) is NOT Lebesgue integrable on $[1, \infty)$.

$$\int_{[1,\infty)} u(x) d\mu_L(x) = \lim_{n \to \infty} \int \frac{1}{x} \ \mathbf{1}_{[1,n)}(x) d\mu_L(x) = \lim_{n \to \infty} \int_1^n \frac{1}{x} dx.$$

(b) v(x) is Lebesgue integrable on (0,1].

We can write

$$v(x) = \frac{1}{\sqrt{x}}, \ x \in (0,1] = \frac{1}{\sqrt{x}} \ \mathbf{1}_{(0,1]}(x) = \sup_{n} \frac{1}{\sqrt{x}} \ \mathbf{1}_{\left[\frac{1}{n},1\right]}(x).$$

Use the Monotone Convergence Theorem for the sequence $\left(\frac{1}{\sqrt{x}} \ \mathbf{1}_{[\frac{1}{n},1]}\right)_{n\in\mathbb{N}}$.

156

www.MATHVN.com - Anh Quang Le, PhD

Bibliography

- [1] Wheeden, L.R.; Zygmund, A. Measure and Integral. Marcel Dekker. New York, 1977.
- [2] Folland. G.B. Real Analysis. John Wiley and Sons. New York, 1985.
- [3] Rudin. W. Real and Complex Analysis. Third edition. McGraw-Hill, Inc. New York, 1987.
- [4] Royden. H.L. Real Analysis. Third edition. Prentice Hall. NJ, 1988.
- [5] Rudin. W Functional Analysis. McGraw-Hill, Inc. New York, 1991.
- [6] Hunter. J.K.; Nachtergaele. B. Applied Analysis. World Scientific. NJ, 2001.
- [7] Yeh, J. Real Analysis. Theory of measure and integration. Second edition. World Scientific. NJ, 2006.