MEASURE and INTEGRATION Problems with Solutions

Anh Quang Le, Ph.D.

October 8, 2013

www.MATHVN.com - Anh Quang Le, PhD

NOTATIONS

$\mathcal{A}(X)$: The σ-algebra of subsets of X.
$(X, \mathcal{A}(X), \mu)$: The measure space on X.
$\mathcal{B}(X)$: The σ-algebra of Borel sets in a topological space X.
\mathcal{M}_{L} : The σ-algebra of Lebesgue measurable sets in \mathbb{R}.
$\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$: The Lebesgue measure space on \mathbb{R}.
μ_{L} : The Lebesgue measure on \mathbb{R}.
μ_{L}^{*} : The Lebesgue outer measure on \mathbb{R}.
$\mathbf{1}_{E}$ or χ_{E} : The characteristic function of the set E.
www.MATHVN.com - Anh Quang Le, PhD

www.MATHVN.com - Anh Quang Le, PhD

Contents

Contents 1
1 Measure on a σ-Algebra of Sets 5
2 Lebesgue Measure on \mathbb{R} 21
3 Measurable Functions 33
4 Convergence a.e. and Convergence in Measure 45
5 Integration of Bounded Functions on Sets of Finite Measure 53
6 Integration of Nonnegative Functions 63
7 Integration of Measurable Functions 75
8 Signed Measures and Radon-Nikodym Theorem 97
9 Differentiation and Integration 109
$10 L^{p}$ Spaces 121
11 Integration on Product Measure Space 141
12 Some More Real Analysis Problems 151

Chapter 1

Measure on a σ-Algebra of Sets

1. Limits of sequences of sets

Definition 1 Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of subsets of a set X.
(a) We say that $\left(A_{n}\right)$ is increasing if $A_{n} \subset A_{n+1}$ for all $n \in \mathbb{N}$, and decreasing if $A_{n} \supset A_{n+1}$ for all $n \in \mathbb{N}$.
(b) For an increasing sequence $\left(A_{n}\right)$, we define

$$
\lim _{n \rightarrow \infty} A_{n}:=\bigcup_{n=1}^{\infty} A_{n}
$$

For a decreasing sequence $\left(A_{n}\right)$, we define

$$
\lim _{n \rightarrow \infty} A_{n}:=\bigcap_{n=1}^{\infty} A_{n}
$$

Definition 2 For any sequence $\left(A_{n}\right)$ of subsets of a set X, we define

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} A_{n}:=\bigcup_{n \in \mathbb{N} k \geq n} \bigcap_{k} \\
& \limsup _{n \rightarrow \infty} A_{n}:=\bigcap_{n \in \mathbb{N} k \geq n} A_{k} .
\end{aligned}
$$

Proposition 1 Let $\left(A_{n}\right)$ be a sequence of subsets of a set X. Then
(i) $\liminf _{n \rightarrow \infty} A_{n}=\left\{x \in X: x \in A_{n}\right.$ for all but finitely many $\left.n \in \mathbb{N}\right\}$.
(ii) $\quad \limsup _{n \rightarrow \infty} A_{n}=\left\{x \in X: x \in A_{n}\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$.
(iii) $\quad \liminf _{n \rightarrow \infty} A_{n} \subset \limsup _{n \rightarrow \infty} A_{n}$.
2. σ-algebra of sets

www.MATHVN.com - Anh Quang Le, PhD

Definition 3 (σ-algebra)
Let X be an arbitrary set. A collection \mathcal{A} of subsets of X is called an algebra if it satisfies the following conditions:

1. $X \in \mathcal{A}$.
2. $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$.
3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

An algebra \mathcal{A} of a set X is called a σ-algebra if it satisfies the additional condition:
4. $A_{n} \in \mathcal{A}, \forall n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in n \in \mathbb{N}$.

Definition 4 (Borel σ-algebra)
Let (X, \mathcal{O}) be a topological space. We call the Borel σ-algebra $\mathcal{B}(X)$ the smallest σ-algebra of X containing \mathcal{O}.

It is evident that open sets and closed sets in X are Borel sets.

3. Measure on a σ-algebra

Definition 5 (Measure)
Let \mathcal{A} be a σ-algebra of subsets of X. A set function μ defined on \mathcal{A} is called a measure if it satisfies the following conditions:

1. $\mu(E) \in[0, \infty]$ for every $E \in \mathcal{A}$.
2. $\mu(\varnothing)=0$.
3. $\left(E_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$, disjoint $\Rightarrow \mu\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(E_{n}\right)$.

Notice that if $E \in \mathcal{A}$ such that $\mu(E)=0$, then E is called a null set. If any subset E_{0} of a null set E is also a null set, then the measure space (X, \mathcal{A}, μ) is called complete.

Proposition 2 (Properties of a measure)
A measure μ on a σ-algebra \mathcal{A} of subsets of X has the following properties:
(1) Finite additivity: $\left(E_{1}, E_{2}, \ldots, E_{n}\right) \subset \mathcal{A}$, disjoint $\Longrightarrow \mu\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mu\left(E_{k}\right)$.
(2) Monotonicity: $E_{1}, E_{2} \in \mathcal{A}, E_{1} \subset E_{2} \Longrightarrow \mu\left(E_{1}\right) \leq m\left(E_{2}\right)$.
(3) $E_{1}, E_{2} \in \mathcal{A}, E_{1} \subset E_{2}, \mu\left(E_{1}\right)<\infty \Longrightarrow \mu\left(E_{2} \backslash E_{1}\right)=\mu\left(E_{2}\right)-\mu\left(E_{1}\right)$.
(4) Countable subadditivity: $\left(E_{n}\right) \subset \mathcal{A} \Longrightarrow \mu\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \leq \sum_{n \in \mathbb{N}} \mu\left(E_{n}\right)$.

Definition 6 (Finite, σ-finite measure)
Let (X, \mathcal{A}, μ) be a measure space.

1. μ is called finite if $\mu(X)<\infty$.
2. μ is called σ-finite if there exists a sequence $\left(E_{n}\right)$ of subsets of X such that

$$
X=\bigcup_{n \in \mathbb{N}} E_{n} \text { and } \mu\left(E_{n}\right)<\infty, \forall n \in \mathbb{N}
$$

www.MATHVN.com - Anh Quang Le, PhD

4. Outer measures

Definition 7 (Outer measure)
Let X be a set. A set function μ^{*} defined on the σ-algebra $\mathcal{P}(X)$ of all subsets of X is called an outer measure on X if it satisfies the following conditions:
(i) $\mu^{*}(E) \in[0, \infty]$ for every $E \in \mathcal{P}(X)$.
(ii) $\mu^{*}(\emptyset)=0$.
(iii) $E, F \in \mathfrak{P}(X), E \subset F \Rightarrow \mu^{*}(E) \leq \mu^{*}(F)$.
(iv) countable subadditivity:

$$
\left(E_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{P}(X), \mu^{*}\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \leq \sum_{n \in \mathbb{N}} \mu^{*}\left(E_{n}\right)
$$

Definition 8 (Caratheodory condition)
We say that $E \in \mathcal{P}(X)$ is μ^{*}-measurable if it satisfies the Caratheodory condition:

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \text { for every } A \in \mathcal{P}(X)
$$

We write $\mathcal{M}\left(\mu^{*}\right)$ for the collection of all μ^{*}-measurable $E \in \mathcal{P}(X)$. Then $\mathcal{M}\left(\mu^{*}\right)$ is a σ-algebra.

Proposition 3 (Properties of μ^{*})
(a) If $E_{1}, E_{2} \in \mathcal{M}\left(\mu^{*}\right)$, then $E_{1} \cup E_{2} \in \mathcal{M}\left(\mu^{*}\right)$.
(b) μ^{*} is additive on $\mathcal{M}\left(\mu^{*}\right)$, that is,

$$
E_{1}, E_{2} \in \mathcal{M}\left(\mu^{*}\right), E_{1} \cap E_{2}=\varnothing \Longrightarrow \mu^{*}\left(E_{1} \cup E_{2}\right)=\mu^{*}\left(E_{1}\right)+\mu^{*}\left(E_{2}\right)
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 1

Let \mathcal{A} be a collection of subsets of a set X with the following properties:

1. $X \in \mathcal{A}$.
2. $A, B \in \mathcal{A} \Rightarrow A \backslash B \in \mathcal{A}$.

Show that \mathcal{A} is an algebra.

Solution

(i) $X \in \mathcal{A}$.
(ii) $A \in \mathcal{A} \Rightarrow A^{c}=X \backslash A \in \mathcal{A} \quad$ (by 2).
(iii) $A, B \in \mathcal{A} \Rightarrow A \cap B=A \backslash B^{c} \in \mathcal{A} \quad$ since $B^{c} \in \mathcal{A} \quad$ (by (ii)).

Since $A^{c}, B^{c} \in \mathcal{A}, \quad(A \cup B)^{c}=A^{c} \cap B^{c} \in \mathcal{A}$. Thus, $A \cup B \in \mathcal{A}$.

Problem 2

(a) Show that if $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of algebras of subsets of a set X, then $\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$ is an algebra of subsets of X.
(b) Show by example that even if \mathcal{A}_{n} in (a) is a σ-algebra for every $n \in \mathbb{N}$, the union still may not be a σ-algebra.

Solution

(a) Let $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$. We show that \mathcal{A} is an algebra.
(i) Since $X \in \mathcal{A}_{n}, \forall n \in \mathbb{N}$, so $X \in \mathcal{A}$.
(ii) Let $A \in \mathcal{A}$. Then $A \in \mathcal{A}_{n}$ for some n. And so $A^{c} \in \mathcal{A}_{n}$ (since \mathcal{A}_{n} is an algebra). Thus, $A^{c} \in \mathcal{A}$.
(iii) Suppose $A, B \in \mathcal{A}$. We shall show $A \cup B \in \mathcal{A}$.

Since $\left\{\mathcal{A}_{n}\right\}$ is increasing, i.e., $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \ldots$ and $A, B \in \bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$, there is some $n_{0} \in \mathbb{N}$ such that $A, B \in \mathcal{A}_{0}$. Thus, $A \cup B \in \mathcal{A}_{0}$. Hence, $A \cup B \in \mathcal{A}$.
(b) Let $X=\mathbb{N}, \mathcal{A}_{n}=$ the family of all subsets of $\{1,2, \ldots, n\}$ and their complements. Clearly, \mathcal{A}_{n} is a σ-algebra and $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \ldots$. However, $\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$ is the family of all finite and co-finite subsets of \mathbb{N}, which is not a σ-algebra.

www.MATHVN.com - Anh Quang Le, PhD

Problem 3

Let X be an arbitrary infinite set. We say that a subset A of X is co-finite if its complement A^{c} is a finite subset of X. Let \mathcal{A} consists of all the finite and the co-finite subsets of a set X.
(a) Show that \mathcal{A} is an algebra of subsets of X.
(b) Show that \mathcal{A} is a σ-algebra if and only if X is a finite set.

Solution

(a)
(i) $X \in \mathcal{A}$ since X is co-finite.
(ii) Let $A \in \mathcal{A}$. If A is finite then A^{c} is co-finite, so $A^{c} \in \mathcal{A}$. If A co-finite then A^{c} is finite, so $A^{c} \in \mathcal{A}$. In both cases,

$$
A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}
$$

(iii) Let $A, B \in \mathcal{A}$. We shall show $A \cup B \in \mathcal{A}$.

If A and B are finite, then $A \cup B$ is finite, so $A \cup B \in \mathcal{A}$. Otherwise, assume that A is co-finite, then $A \cup B$ is co-finite, so $A \cup B \in \mathcal{A}$. In both cases,

$$
A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}
$$

(b) If X is finite then $\mathcal{A}=\mathcal{P}(X)$, which is a σ-algebra.

To show the reserve, i.e., if \mathcal{A} is a σ-algebra then X is finite, we assume that X is infinite. So we can find an infinite sequence (a_{1}, a_{2}, \ldots) of distinct elements of X such that $X \backslash\left\{a_{1}, a_{2}, \ldots\right\}$ is infinite. Let $A_{n}=\left\{a_{n}\right\}$. Then $A_{n} \in \mathcal{A}$ for any $n \in \mathbb{N}$, while $\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$ is neither finite nor co-finite. So $\bigcup_{n \in \mathbb{N}} A_{n} \notin \mathcal{A}$. Thus, \mathcal{A} is not a σ-algebra: a contradiction!

Note:
For an arbitrary collection \mathcal{C} of subsets of a set X, we write $\sigma(\mathcal{C})$ for the smallest σ-algebra of subsets of X containing \mathcal{C} and call it the σ-algebra generated by \mathcal{C}.

Problem 4

Let \mathcal{C} be an arbitrary collection of subsets of a set X. Show that for a given $A \in \sigma(\mathcal{C})$, there exists a countable sub-collection \mathcal{C}_{A} of \mathcal{C} depending on A such that $A \in \sigma\left(\mathcal{C}_{A}\right)$. (We say that every member of $\sigma(\mathcal{C})$ is countable generated).

www.MATHVN.com - Anh Quang Le, PhD

CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Solution

Denote by \mathcal{B} the family of all subsets A of X for which there exists a countable sub-collection \mathcal{C}_{A} of \mathcal{C} such that $A \in \sigma\left(\mathcal{C}_{A}\right)$. We claim that \mathcal{B} is a σ-algebra and that $\mathcal{C} \subset \mathcal{B}$.
The second claim is clear, since $A \in \sigma(\{A\})$ for any $A \in \mathcal{C}$. To prove the first one, we have to verify that \mathcal{B} satisfies the definition of a σ-algebra.
(i) Clearly, $X \in \mathcal{B}$.
(ii) If $A \in \mathcal{B}$ then $A \in \sigma\left(\mathcal{C}_{A}\right)$ for some countable family $\mathcal{C}_{A} \subset \sigma(\mathcal{C})$. Then $A^{c} \in \sigma\left(\mathcal{C}_{A}\right)$, so $A^{c} \in \mathcal{B}$.
(iii) Suppose $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{B}$. Then $A_{n} \in \sigma\left(\mathcal{C}_{A_{n}}\right)$ for some countable family $\mathcal{C}_{A_{n}} \subset \mathcal{C}$. Let $\mathcal{E}=\bigcup_{n \in \mathbb{N}} \mathcal{C}_{A_{n}}$ then \mathcal{E} is countable and $\mathcal{E} \subset \mathcal{C}$ and $A_{n} \in \sigma(\mathcal{E})$ for all $n \in \mathbb{N}$. By definition of σ-algebra, $\bigcup_{n \in \mathbb{N}} A_{n} \in \sigma(\mathcal{E})$, and so $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{B}$.

Thus, \mathcal{B} is a σ-algebra of subsets of X and $\mathcal{E} \subset \mathcal{B}$. Hence,

$$
\sigma(\mathcal{E}) \subset \mathcal{B} .
$$

By definition of \mathcal{B}, this implies that for every $A \in \sigma(\mathcal{C})$ there exists a countable $\mathcal{E} \subset \mathcal{C}$ such that $A \in \sigma(\mathcal{E})$.

Problem 5

Let γ a set function defined on a σ-algebra \mathcal{A} of subsets of X. Show that it γ is additive and countably subadditive on \mathcal{A}, then it is countably additive on \mathcal{A}.

Solution

We first show that the additivity of γ implies its monotonicity. Indeed, let $A, B \in \mathcal{A}$ with $A \subset B$. Then

$$
B=A \cup(B \backslash A) \text { and } A \cap(B \backslash A)=\varnothing
$$

Since γ is additive, we get

$$
\gamma(B)=\gamma(A)+\gamma(B \backslash A) \geq \gamma(A)
$$

Now let $\left(E_{n}\right)$ be a disjoint sequence in \mathcal{A}. For every $N \in \mathbb{N}$, by the monotonicity and the additivity of γ, we have

$$
\gamma\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \geq \gamma\left(\bigcup_{n=1}^{N} E_{n}\right)=\sum_{n=1}^{N} \gamma\left(E_{n}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Since this holds for every $N \in \mathbb{N}$, so we have
(i) $\quad \gamma\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \geq \sum_{n \in \mathbb{N}} \gamma\left(E_{n}\right)$.

On the other hand, by the countable subadditivity of γ, we have

$$
\text { (ii) } \quad \gamma\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \leq \sum_{n \in \mathbb{N}} \gamma\left(E_{n}\right) \text {. }
$$

From (i) and (ii), it follows that

$$
\gamma\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\sum_{n \in \mathbb{N}} \gamma\left(E_{n}\right)
$$

This proves the countable additivity of γ.

Problem 6

Let X be an infinite set and \mathcal{A} be the algebra consisting of the finite and co-finite subsets of X (cf. Prob.3). Define a set function μ on \mathcal{A} by setting for every $A \in \mathcal{A}$:

$$
\mu(A)=\left\{\begin{array}{l}
0 \quad \text { if } A \text { is finite } \\
1 \text { if } A \text { is co-finite }
\end{array}\right.
$$

(a) Show that μ is additive.
(b) Show that when X is countably infinite, μ is not additive.
(c) Show that when X is countably infinite, then X is the limit of an increasing sequence $\left\{A_{n}: n \in \mathbb{N}\right\}$ in \mathcal{A} with $\mu\left(A_{n}\right)=0$ for every $n \in \mathbb{N}$, but $\mu(X)=1$.
(d) Show that when X is uncountably, the μ is countably additive.

Solution

(a) Suppose $A, B \in \mathcal{A}$ and $A \cap B=\emptyset$ (i.e., $A \subset B^{c}$ and $B \subset A^{c}$).

If A is co-finite then B is finite (since $B \subset A^{c}$). So $A \cup B$ is co-finite. We have $\mu(A \cup B)=1, \quad \mu(A)=1$ and $\mu(B)=0$. Hence, $\mu(A \cup B)=\mu(A)+\mu(B)$.
If B is co-finite then A is finite (since $A \subset B^{c}$). So $A \cup B$ is co-finite, and we have the same result. Thus, μ is additive.
(b) Suppose X is countably infinite. We can then put X under this form: $X=$ $\left\{x_{1}, x_{2}, \ldots\right\}, \quad x_{i} \neq x_{j}$ if $i \neq j$. Let $A_{n}=\left\{x_{n}\right\}$. Then the family $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is disjoint and $\mu\left(A_{n}\right)=0$ for every $n \in \mathbb{N}$. So $\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)=0$. On the other hand, we have

www.MATHVN.com - Anh Quang Le, PhD

$\bigcup_{n \in \mathbb{N}} A_{n}=X$, and $\mu(X)=1$. Thus,

$$
\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \neq \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right) .
$$

Hence, μ is not additive.
(c) Suppose X is countably infinite, and $X=\left\{x_{1}, x_{2}, \ldots\right\}, x_{i} \neq x_{j}$ if $i \neq j$ as in (b). Let $B_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $\mu\left(B_{n}\right)=0$ for every $n \in \mathbb{N}$, and the sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ is increasing. Moreover,

$$
\lim _{n \rightarrow \infty} B_{n}=\bigcup_{n \in \mathbb{N}} B_{n}=X \text { and } \mu(X)=1
$$

(d) Suppose X is uncountably. Consider the family of disjoint sets $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ in \mathcal{A}. Suppose $C=\bigcup_{n \in \mathbb{N}} C_{n} \in \mathcal{A}$. We first claim: At most one of the C_{n} 's can be co-finite. Indeed, assume there are two elements C_{n} and C_{m} of the family are co-finite. Since $C_{m} \subset C_{n}^{c}$, so C_{m} must be finite: a contradiction.
Suppose $C_{n_{0}}$ is the co-finite set. Then since $C \supset C_{n_{0}}, C$ is also co-finite. Therefore,

$$
\mu(C)=\mu\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=1
$$

On the other hand, we have

$$
\mu\left(C_{n_{0}}\right)=1 \text { and } \mu\left(C_{n}\right)=0 \text { for } n \neq n_{0} .
$$

Thus,

$$
\mu\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(C_{n}\right)
$$

If all C_{n} are finite then $\bigcup_{n \in \mathbb{N}} C_{n}$ is finite, so we have

$$
0=\mu\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(C_{n}\right)
$$

Problem 7

Let (X, \mathcal{A}, μ) be a measure space. Show that for any $A, B \in \mathcal{A}$, we have the equality:

$$
\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

If $\mu(A)=\infty$ or $\mu(B)=\infty$, then the equality is clear. Suppose $\mu(A)$ and $\mu(B)$ are finite. We have

$$
\begin{aligned}
A \cup B & =(A \backslash B) \cup(A \cap B) \cup(B \backslash A), \\
A & =(A \backslash B) \cup(A \cap B) \\
B & =(B \backslash A) \cup(A \cap B) .
\end{aligned}
$$

Notice that in these decompositions, sets are disjoint. So we have

$$
\begin{align*}
\mu(A \cup B) & =\mu(A \backslash B)+\mu(A \cap B)+\mu(B \backslash A) \tag{1.1}\\
\mu(A)+\mu(B) & =2 \mu(A \cap B)+\mu(A \backslash B)+\mu(B \backslash A) \tag{1.2}
\end{align*}
$$

From (1.1) and (1.2) we obtain

$$
\mu(A \cup B)-\mu(A)-\mu(B)=-\mu(A \cap B)
$$

The equality is proved.

Problem 8

The symmetry difference of $A, B \in \mathcal{P}(X)$ is defined by

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

(a) Prove that

$$
\forall A, B, C \in \mathcal{P}(X), A \triangle B \subset(A \triangle C) \cup(C \triangle B)
$$

(b) Let (X, \mathcal{A}, μ) be a measure space. Show that

$$
\forall A, B, C \in \mathcal{A}, \mu(A \triangle B) \leq \mu(A \triangle C)+\mu(C \triangle B)
$$

Solution

(a) Let $x \in A \triangle B$. Suppose $x \in A \backslash B$. If $x \in C$ then $x \in C \backslash B$ so $x \in C \triangle B$. If $x \notin C$, then $x \in A \backslash C$, so $x \in A \triangle C$. In both cases, we have

$$
x \in A \triangle B \Rightarrow x \in(A \triangle C) \cup(C \triangle B)
$$

The case $x \in B \backslash A$ is dealt with the same way.
(b) Use subadditivity of μ and (a).

www.MATHVN.com - Anh Quang Le, PhD

Problem 9

Let X be an infinite set and μ the counting measure on the σ-algebra $\mathcal{A}=\mathcal{P}(X)$.
Show that there exists a decreasing sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{A} such that

$$
\lim _{n \rightarrow \infty} E_{n}=\varnothing \text { with } \lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \neq 0
$$

Solution

Since X is a infinite set, we can find an countably infinite set $\left\{x_{1}, x_{2}, \ldots\right\} \subset X$ with $x_{i} \neq x_{j}$ if $i \neq j$. Let $E_{n}=\left\{x_{n}, x_{n+1}, \ldots\right\}$. Then $\left(E_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathcal{A} with

$$
\lim _{n \rightarrow \infty} E_{n}=\varnothing \text { and } \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0
$$

Problem 10 (Monotone sequence of measurable sets)
Let (X, \mathcal{A}, μ) be a measure space, and $\left(E_{n}\right)$ be a monotone sequence in \mathcal{A}.
(a) If $\left(E_{n}\right)$ is increasing, show that

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\lim _{n \rightarrow \infty} E_{n}\right) .
$$

(b) If $\left(E_{n}\right)$ is decreasing, show that

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)
$$

provided that there is a set $A \in \mathcal{A}$ satisfying $\mu(A)<\infty$ and $A \supset E_{1}$.

Solution

Recall that if $\left(E_{n}\right)$ is increasing then $\lim _{n \rightarrow \infty} E_{n}=\bigcup_{n \in \mathbb{N}} E_{n} \in \mathcal{A}$, and if $\left(E_{n}\right)$ is decreasing then $\lim _{n \rightarrow \infty} E_{n}=\bigcap_{n \in \mathbb{N}} E_{n} \in \mathcal{A}$. Note also that if $\left(E_{n}\right)$ is a monotone sequence in \mathcal{A}, then $\left(\mu\left(E_{n}\right)\right)$ is a monotone sequence in $[0, \infty]$ by the monotonicity of μ, so that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$ exists in $[0, \infty]$.
(a) Suppose $\left(E_{n}\right)$ is increasing. Then the sequence $\left(\mu\left(E_{n}\right)\right)$ is also increasing. Consider the first case where $\mu\left(E_{n_{0}}\right)=\infty$ for some $E_{n_{0}}$. In this case we have $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\infty$. On the other hand,

$$
E_{n_{0}} \subset \bigcup_{n \in \mathbb{N}} E_{n}=\lim _{n \rightarrow \infty} E_{n} \Longrightarrow \mu\left(\lim _{n \rightarrow \infty} E_{n}\right) \geq \mu\left(E_{n_{0}}\right)=\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus

$$
\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\infty=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

Consider the next case where $\mu\left(E_{n}\right)<\infty$ for all $n \in \mathbb{N}$. Let $E_{0}=\varnothing$, then consider the disjoint sequence $\left(F_{n}\right)$ in \mathcal{A} defined by $F_{n}=E_{n} \backslash E_{n-1}$ for all $n \in \mathbb{N}$. It is evident that

$$
\bigcup_{n \in \mathbb{N}} E_{n}=\bigcup_{n \in \mathbb{N}} F_{n}
$$

Then we have

$$
\begin{aligned}
\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\mu\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) & =\mu\left(\bigcup_{n \in \mathbb{N}} F_{n}\right) \\
& =\sum_{n \in \mathbb{N}} \mu\left(F_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(E_{n} \backslash E_{n-1}\right) \\
& =\sum_{n \in \mathbb{N}}\left[\mu\left(E_{n}\right)-\mu\left(E_{n-1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\mu\left(E_{k}\right)-\mu\left(E_{k-1}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\mu\left(E_{n}\right)-\mu\left(E_{0}\right)\right]=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
\end{aligned}
$$

(b) Suppose $\left(E_{n}\right)$ is decreasing and assume the existence of a containing set A with finite measure. Define a disjoint sequence $\left(G_{n}\right)$ in \mathcal{A} by setting $G_{n}=E_{n} \backslash E_{n+1}$ for all $n \in \mathbb{N}$. We claim that

$$
\text { (1) } E_{1} \backslash \bigcap_{n \in \mathbb{N}} E_{n}=\bigcup_{n \in \mathbb{N}} G_{n} \text {. }
$$

To show this, let $x \in E_{1} \backslash \bigcap_{n \in \mathbb{N}} E_{n}$. Then $x \in E_{1}$ and $x \notin \bigcap_{n \in \mathbb{N}} E_{n}$. Since the sequence $\left(E_{n}\right)$ is decreasing, there exists the first set $E_{n_{0}+1}$ in the sequence not containing x. Then

$$
x \in E_{n_{0}} \backslash E_{n_{0}+1}=G_{n_{0}} \Longrightarrow x \in \bigcup_{n \in \mathbb{N}} G_{n}
$$

Conversely, if $x \in \bigcup_{n \in \mathbb{N}} G_{n}$, then $x \in G_{n_{0}}=E_{n_{0}} \backslash E_{n_{0}+1}$ for some $n_{0} \in \mathbb{N}$. Now $x \in E_{n_{0}} \subset E_{1}$. Since $x \notin E_{n_{0}+1}$, we have $x \notin \bigcap_{n \in \mathbb{N}} E_{n}$. Thus $x \in E_{1} \backslash \bigcap_{n \in \mathbb{N}} E_{n}$. Hence (1) is proved.
Now by (1) we have
(2) $\mu\left(E_{1} \backslash \bigcap_{n \in \mathbb{N}} E_{n}\right)=\mu\left(\bigcup_{n \in \mathbb{N}} G_{n}\right)$.

www.MATHVN.com - Anh Quang Le, PhD

Since $\mu\left(\bigcap_{n \in \mathbb{N}} E_{n}\right) \leq \mu\left(E_{1}\right) \leq \mu(A)<\infty$, we have

$$
\text { (3) } \begin{aligned}
\mu\left(E_{1} \backslash \bigcap_{n \in \mathbb{N}} E_{n}\right) & =\mu\left(E_{1}\right)-\mu\left(\bigcap_{n \in \mathbb{N}} E_{n}\right) \\
& =\mu\left(E_{1}\right)-\mu\left(\lim _{n \rightarrow \infty} E_{n}\right) .
\end{aligned}
$$

By the countable additivity of μ, we have

$$
\begin{align*}
\mu\left(\bigcup_{n \in \mathbb{N}} G_{n}\right) & =\sum_{n \in \mathbb{N}} \mu\left(G_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(E_{n} \backslash E_{n+1}\right) \tag{4}\\
& =\sum_{n \in \mathbb{N}}\left[\mu\left(E_{n}\right)-\mu\left(E_{n+1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\mu\left(E_{k}\right)-\mu\left(E_{k+1}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\mu\left(E_{1}\right)-\mu\left(E_{n+1}\right)\right] \\
& =\mu\left(E_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(E_{n+1}\right)
\end{align*}
$$

Substituting (3) and (4) in (2), we have

$$
\mu\left(E_{1}\right)-\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\mu\left(E_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(E_{n+1}\right) .
$$

Since $\mu\left(E_{1}\right)<\infty$, we have

$$
\mu\left(\lim _{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 11 (Fatou's lemma for μ)
Let (X, \mathcal{A}, μ) be a measure space, and $\left(E_{n}\right)$ be a sequence in \mathcal{A}.
(a) Show that

$$
\mu\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

(b) If there exists $A \in \mathcal{A}$ with $E_{n} \subset A$ and $\mu(A)<\infty$ for every $n \in \mathbb{N}$, then show that

$$
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right) \geq \underset{n \rightarrow \infty}{\limsup } \mu\left(E_{n}\right) .
$$

Solution

(a) Recall that

$$
\liminf _{n \rightarrow \infty} E_{n}=\bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} E_{k}=\lim _{n \rightarrow \infty} \bigcap_{k \geq n} E_{k},
$$

by the fact that $\left(\bigcap_{k \geq n} E_{k}\right)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{A}. Then by Problem 9a we have

$$
(*) \quad \mu\left(\liminf _{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcap_{k \geq n} E_{k}\right)=\liminf _{n \rightarrow \infty} \mu\left(\bigcap_{k \geq n} E_{k}\right) \text {, }
$$

since the limit of a sequence, if it exists, is equal to the limit inferior of the sequence. Since $\bigcap_{k \geq n} E_{k} \subset E_{n}$, we have $\mu\left(\bigcap_{k \geq n} E_{k}\right) \leq \mu\left(E_{n}\right)$ for every $n \in \mathbb{N}$. This implies that

$$
\liminf _{n \rightarrow \infty} \mu\left(\bigcap_{k \geq n} E_{k}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

Thus by ($*$) we obtain

$$
\mu\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

(b) Now

$$
\limsup _{n \rightarrow \infty} E_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} E_{k}=\lim _{n \rightarrow \infty} \bigcup_{k \geq n} E_{k},
$$

by the fact that $\left(\bigcup_{k \geq n} E_{k}\right)_{n \in \mathbb{N}}$ is an decreasing sequence in \mathcal{A}. Since $E_{n} \subset A$ for all $n \in \mathbb{N}$, we have $\bigcup_{k \geq n} E_{k} \subset A$ for all $n \in \mathbb{N}$. Thus by Problem 9 b we have

$$
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right)=\mu\left(\lim _{n \rightarrow \infty} \bigcup_{k \geq n} E_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k \geq n} E_{k}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Now

$$
\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k \geq n} E_{k}\right)=\limsup _{n \rightarrow \infty} \mu\left(\bigcup_{k \geq n} E_{k}\right)
$$

since the limit of a sequence, if it exists, is equal to the limit superior of the sequence. Then by $\bigcup_{k \geq n} E_{k} \supset E_{n}$ we have

$$
\mu\left(\bigcup_{k \geq n} E_{k}\right) \geq \mu\left(E_{n}\right)
$$

Thus

$$
\limsup _{n \rightarrow \infty} \mu\left(\bigcup_{k \geq n} E_{k}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

It follows that

$$
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(E_{n}\right) .
$$

Problem 12

Let μ^{*} be an outer measure on a set X. Show that the following two conditions are equivalent:
(i) μ^{*} is additive on $\mathcal{P}(X)$.
(ii) Every element of $\mathcal{P}(X)$ is μ^{*}-measurable, that is, $\mathcal{M}\left(\mu^{*}\right)=\mathcal{P}(X)$.

Solution

- Suppose μ^{*} is additive on $\mathcal{P}(X)$. Let $E \in \mathcal{P}(X)$. Then for any $A \in \mathcal{P}(X)$,

$$
A=(A \cap E) \cup\left(A \cap E^{c}\right) \text { and }(A \cap E) \cap\left(A \cap E^{c}\right)=\varnothing .
$$

By the additivity of μ^{*} on $\mathcal{P}(X)$, we have

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

This show that E satisfies the Carathéodory condition. Hence $E \in \mathcal{M}\left(\mu^{*}\right)$. So $\mathcal{P}(X) \subset \mathcal{M}\left(\mu^{*}\right)$. But by definition, $\mathcal{M}\left(\mu^{*}\right) \subset \mathcal{P}(X)$. Thus

$$
\mathcal{M}\left(\mu^{*}\right)=\mathcal{P}(X)
$$

- Conversely, suppose $\mathcal{M}\left(\mu^{*}\right)=\mathcal{P}(X)$. Since μ^{*} is additive on $\mathcal{M}\left(\mu^{*}\right)$ by Proposition 3 , so μ^{*} is additive on $\mathcal{P}(X)$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 13

Let μ^{*} be an outer measure on a set X.
(a) Show that the restriction μ of μ^{*} on the σ-algebra $\mathcal{M}\left(\mu^{*}\right)$ is a measure on $\mathcal{M}\left(\mu^{*}\right)$.
(b) Show that if μ^{*} is additive on $\mathcal{P}(X)$, then it is countably additive on $\mathcal{P}(X)$.

Solution

(a) By definition, μ^{*} is countably subadditive on $\mathcal{P}(X)$. Its restriction μ on $\mathcal{M}\left(\mu^{*}\right)$ is countably subadditive on $\mathcal{M}\left(\mu^{*}\right)$. By Proposition $3 \mathrm{~b}, \mu^{*}$ is additive on $\mathcal{M}\left(\mu^{*}\right)$. Therefore, by Problem 5, μ^{*} is countably additive on $\mathcal{M}\left(\mu^{*}\right)$. Thus, μ^{*} is a measure on $\mathcal{M}\left(\mu^{*}\right)$. But μ is the restriction of μ^{*} on $\mathcal{M}\left(\mu^{*}\right)$, so we can say that μ is a measure on $\mathcal{M}\left(\mu^{*}\right)$.
(b) If μ^{*} is additive on $\mathcal{P}(X)$, then by Problem $11, \mathcal{M}\left(\mu^{*}\right)=\mathcal{P}(X)$. So μ^{*} is a measure on $\mathcal{P}(X)$ (Problem 5). In particular, μ^{*} is countably additive on $\mathcal{P}(X)$.

www.MATHVN.com - Anh Quang Le, PhD

www.MATHVN.com - Anh Quang Le, PhD

Chapter 2

Lebesgue Measure on \mathbb{R}

1. Lebesgue outer measure on \mathbb{R}

Definition 9 (Outer measure)
Lebesgue outer measure on \mathbb{R} is a set function $\mu_{L}^{*}: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ defined by

$$
\mu_{L}^{*}(A)=\inf \left\{\sum_{k=1}^{\infty} \ell\left(I_{k}\right): A \subset \bigcup_{k=1}^{\infty} I_{k}, I_{k} \text { is open interval in } \mathbb{R}\right\}
$$

Proposition 4 (Properties of μ_{L}^{*})

1. $\mu_{L}^{*}(A)=0$ if A is at most countable.
2. Monotonicity: $A \subset B \Rightarrow \mu_{L}^{*}(A) \leq \mu_{L}^{*}(B)$.
3. Translation invariant: $\mu_{L}^{*}(A+x)=\mu_{L}^{*}(A), \forall x \in \mathbb{R}$.
4. Countable subadditivity: $\mu_{L}^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu_{L}^{*}\left(A_{n}\right)$.
5. Null set: $\mu_{L}^{*}(A)=0 \Rightarrow \mu_{L}^{*}(A \cup B)=\mu_{L}^{*}(B)$ and $\mu_{L}^{*}(B \backslash A)=\mu_{L}^{*}(B)$ for all $B \in \mathcal{P}(\mathbb{R})$.
6. For any interval $I \subset \mathbb{R}, \quad \mu_{L}^{*}(I)=\ell(I)$.
7. Regularity:

$$
\forall E \in \mathcal{P}(\mathbb{R}), \varepsilon>0, \exists O \text { open set in } \mathbb{R}: O \supset E \quad \text { and } \mu_{L}^{*}(E) \leq \mu_{L}^{*}(O) \leq \mu_{L}^{*}(E)+\varepsilon
$$

2. Measurable sets and Lebesgue measure on \mathbb{R}

Definition 10 (Carathéodory condition)
A set $E \subset \mathbb{R}$ is said to be Lebesgue measurable (or μ_{L}-measurable, or measurable) if, for all $A \subset \mathbb{R}$, we have

$$
\mu_{L}^{*}(A)=\mu_{L}^{*}(A \cap E)+\mu_{L}^{*}\left(A \cap E^{c}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Since μ_{L}^{*} is subadditive, the sufficient condition for Carathéodory condition is

$$
\mu_{L}^{*}(A) \geq \mu_{L}^{*}(A \cap E)+\mu_{L}^{*}\left(A \cap E^{c}\right)
$$

The family of all measurable sets is denoted by \mathcal{M}_{L}. We can see that \mathcal{M}_{L} is a σ-algebra. The restriction of μ_{L}^{*} on \mathcal{M}_{L} is denoted by μ_{L} and is called Lebesgue measure.

Proposition 5 (Properties of μ_{L})

1. $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$ is a complete measure space.
2. $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$ is σ-finite measure space.
3. $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{L}$, that is, every Borel set is measurable.
4. $\mu_{L}(O)>0$ for every nonempty open set in \mathbb{R}.
5. $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$ is translation invariant.
6. $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$ is positively homogeneous, that is,

$$
\mu_{L}(\alpha E)=|\alpha| \mu_{L}(E), \forall \alpha \in \mathbb{R}, E \in \mathcal{M}_{L}
$$

Note on F_{σ} and G_{δ} sets:
Let (X, \mathcal{T}) be a topological space.

- A subset E of X is called a F_{σ}-set if it is the union of countably many closed sets.
- A subset E of X is called a G_{δ}-set if it is the intersection of countably many open sets.
- If E is a G_{δ}-set then E^{c} is a F_{σ}-set and vice versa. Every G_{δ}-set is Borel set, so is every F_{σ}-set.

Problem 14

If E is a null set in $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$, prove that E^{c} is dense in \mathbb{R}.

Solution

For every open interval I in $\mathbb{R}, \mu_{L}(I)>0$ (property of Lebesgue measure). If $\mu_{L}(E)=0$, then by the monotonicity of μ_{L}, E cannot contain any open interval as a subset. This implies that

$$
E^{c} \cap I=\varnothing
$$

for any open interval I in \mathbb{R}. Thus E^{c} is dense in \mathbb{R}.

www.MATHVN.com - Anh Quang Le, PhD

Problem 15

Prove that for every $E \subset \mathbb{R}$, there exists a G_{δ}-set $G \subset \mathbb{R}$ such that

$$
G \supset E \quad \text { and } \quad \mu_{L}^{*}(G)=\mu_{L}^{*}(E)
$$

Solution

We use the regularity property of μ_{L}^{*} (Property 7).
For $\varepsilon=\frac{1}{n}, n \in \mathbb{N}$, there exists an open set $O_{n} \subset \mathbb{R}$ such that

$$
O_{n} \supset E \text { and } \mu_{L}^{*}(E) \leq \mu_{L}^{*}\left(O_{n}\right) \leq \mu_{L}^{*}(E)+\frac{1}{n}
$$

Let $G=\bigcap_{n \in \mathbb{N}} O_{n}$. Then G is a G_{δ}-set and $G \supset E$. Since $G \subset O_{n}$ for every $n \in \mathbb{N}$, we have

$$
\mu_{L}^{*}(E) \leq \mu_{L}^{*}(G) \leq \mu_{L}^{*}\left(O_{n}\right) \leq \mu_{L}^{*}(E)+\frac{1}{n}
$$

This holds for every $n \in \mathbb{N}$, so we have

$$
\mu_{L}^{*}(E) \leq \mu_{L}^{*}(G) \leq \mu_{L}^{*}(E)
$$

Therefore

$$
\mu^{*}(G)=\mu^{*}(E)
$$

Problem 16

Let $E \subset \mathbb{R}$. Prove that the following statements are equivalent:
(i) E is (Lebesgue) measurable.
(ii) For every $\varepsilon>0$, there exists an open set $O \supset E$ with $\mu_{L}^{*}(O \backslash E) \leq \varepsilon$.
(iii) There exists a G_{δ}-set $G \supset E$ with $\mu_{L}^{*}(G \backslash E)=0$.

Solution

- $(i) \Rightarrow(i i)$ Suppose that E is measurable. Then

$$
\begin{equation*}
\forall \varepsilon>0, \exists \text { open set } O: O \supset E \text { and } \mu_{L}^{*}(E) \leq \mu_{L}^{*}(O) \leq \mu_{L}^{*}(E)+\varepsilon \tag{1}
\end{equation*}
$$

Since E is measurable, with O as a testing set in the Carathéodory condition satisfied by E, we have

$$
\begin{equation*}
\mu_{L}^{*}(O)=\mu_{L}^{*}(O \cap E)+\mu_{L}^{*}\left(O \cap E^{c}\right)=\mu_{L}^{*}(E)+\mu_{L}^{*}(O \backslash E) \tag{2}
\end{equation*}
$$

www.MATHVN.com - Anh Quang Le, PhD

If $\mu_{L}^{*}(E)<\infty$, then from (1) and (2) we get

$$
\mu_{L}^{*}(O) \leq \mu_{L}^{*}(E)+\varepsilon \Longrightarrow \mu_{L}^{*}(O)-\mu_{L}^{*}(E)=\mu_{L}^{*}(O \backslash E) \leq \varepsilon
$$

If $\mu_{L}^{*}(E)=\infty$, let $E_{n}=E \cap(n-1, n]$ for $n \in \mathbb{Z}$. Then $\left(E_{n}\right)_{n \in \mathbb{Z}}$ is a disjoint sequence in \mathcal{M}_{L} with

$$
\bigcup_{n \in \mathbb{Z}} E_{n}=E \text { and } \mu_{L}\left(E_{n}\right) \leq \mu_{L}((n-1, n])=1
$$

Now, for every $\varepsilon>0$, there is an open set O_{n} such that

$$
O_{n} \supset E_{n} \text { and } \mu_{L}\left(O_{n} \backslash E_{n}\right) \leq \frac{1}{3} \cdot \frac{\varepsilon}{2^{|n|}}
$$

Let $\left.O=\bigcup_{n \in \mathbb{Z}}\right) O_{n}$, then O is open and $O \supset E$, and

$$
\begin{aligned}
O \backslash E & =\left(\bigcup_{n \in \mathbb{Z}} O_{n}\right) \backslash\left(\bigcup_{n \in \mathbb{Z}} E_{n}\right)=\left(\bigcup_{n \in \mathbb{Z}} O_{n}\right) \cap\left(\bigcup_{n \in \mathbb{Z}} E_{n}\right)^{c} \\
& =\bigcup_{n \in \mathbb{Z}}\left[O_{n} \cap\left(\bigcup_{n \in \mathbb{Z}} E_{n}\right)^{c}\right]=\bigcup_{n \in \mathbb{Z}}\left[O_{n} \backslash\left(\bigcup_{n \in \mathbb{Z}} E_{n}\right)\right] \\
& \subset \bigcup_{n \in \mathbb{Z}}\left(O_{n} \backslash E_{n}\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\mu_{L}^{*}(O \backslash E) & \leq \mu_{L}^{*}\left(\bigcup_{n \in \mathbb{Z}}\left(O_{n} \backslash E_{n}\right)\right) \leq \sum_{n \in \mathbb{Z}} \mu_{L}^{*}\left(O_{n} \backslash E\right) \\
& \leq \sum_{n \in \mathbb{Z}} \frac{1}{3} \cdot \frac{\varepsilon}{2^{|n|}}=\frac{1}{3} \varepsilon+2 \sum_{n \in \mathbb{N}} \frac{1}{3} \cdot \frac{\varepsilon}{2^{n}} \\
& =\frac{1}{3} \varepsilon+\frac{2}{3} \varepsilon=\varepsilon
\end{aligned}
$$

This shows that (ii) satisfies.

- $(i i) \Rightarrow(i i i)$ Assume that E satisfies ($i i$). Then for $\varepsilon=\frac{1}{n}, n \in \mathbb{N}$, there is an open set O_{n} such that

$$
O_{n} \supset E_{n} \text { and } \mu_{L}\left(O_{n} \backslash E_{n}\right) \leq \frac{1}{n}, \forall n \in \mathbb{N}
$$

Let $G=\bigcap_{n \in \mathbb{N}} O_{n}$. Then G is a G_{δ}-set containing E. Now

$$
G \subset O \Longrightarrow \mu_{L}^{*}(G \backslash E) \leq \mu_{L}^{*}\left(O_{n} \backslash E\right) \leq \frac{1}{n}, \forall n \in \mathbb{N}
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus $\mu_{L}^{*}(G \backslash E)=0$. This shows that E satisfies ($i i i$).

- $(i i i) \Rightarrow(i)$ Assume that E satisfies (iii). Then there exists a G_{δ}-set G such that

$$
G \supset E \text { and } \mu_{L}^{*}(G \backslash E)=0
$$

Now $\mu_{L}^{*}(G \backslash E)=0$ implies that $G \backslash E$ is (Lebesgue) measurable. Since $E \subset G$, we can write $E=G \backslash(G \backslash E)$. Then the fact that G and $G \backslash E$ are (Lebesgue) measurable implies that E is (Lebesgue) measurable.

Problem 17(Similar problem)

Let $E \subset \mathbb{R}$. Prove that the following statements are equivalent:
(i) E is (Lebesgue) measurable.
(ii) For every $\varepsilon>0$, there exists an closed set $C \subset E$ with $\mu_{L}^{*}(E \backslash C) \leq \varepsilon$.
(iii) There exists a F_{σ}-set $F \subset E$ with $\mu_{L}^{*}(E \backslash F)=0$.

Problem 18

Let \mathbb{Q} be the set of all rational numbers in \mathbb{R}. For any $\varepsilon>0$, construct an open set $O \subset \mathbb{R}$ such that

$$
O \supset \mathbb{Q} \text { and } \mu_{L}^{*}(O) \leq \varepsilon .
$$

Solution

Since \mathbb{Q} is countable, we can write $\mathbb{Q}=\left\{r_{1}, r_{2}, \ldots\right\}$. For any $\varepsilon>0$, let

$$
I_{n}=\left(r_{n}-\frac{\varepsilon}{2^{n+1}}, r_{n}+\frac{\varepsilon}{2^{n+1}}\right), \quad n \in \mathbb{N} .
$$

Then I_{n} is open and $O=\bigcup_{n=1}^{\infty} I_{n}$ is also open. We have, for every $n \in \mathbb{N}, r_{n} \in I_{n}$. Therefore $O \supset \mathbb{Q}$.
Moreover,

$$
\begin{aligned}
\mu_{L}^{*}(O)=\mu_{L}^{*}\left(\bigcup_{n=1}^{\infty} I_{n}\right) & \leq \sum_{n=1}^{\infty} \mu_{L}^{*}\left(I_{n}\right) \\
& =\sum_{n=1}^{\infty} \frac{2 \varepsilon}{2^{n+1}} \\
& =\varepsilon \sum_{n=1}^{\infty} \frac{1}{2^{n}}=\varepsilon .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 19

Let \mathbb{Q} be the set of all rational numbers in \mathbb{R}.
(a) Show that \mathbb{Q} is a null set in $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_{L}\right)$.
(b) Show that \mathbb{Q} is a F_{σ}-set.
(c) Show that there exists a G_{δ}-set G such that $G \supset \mathbb{Q}$ and $\mu_{L}(G)=0$.
(d) Show that the set of all irrational numbers in \mathbb{R} is a G_{δ}-set.

Solution

(a) Since \mathbb{Q} is countable, we can write $\mathbb{Q}=\left\{r_{1}, r_{2}, \ldots\right\}$. Each $\left\{r_{n}\right\}, n \in \mathbb{N}$ is closed, so $\left\{r_{n}\right\} \in \mathcal{B}_{\mathbb{R}}$. Since $\mathcal{B}_{\mathbb{R}}$ is a σ-algebra,

$$
\mathbb{Q}=\bigcup_{n=1}^{\infty}\left\{r_{n}\right\} \in \mathcal{B}_{\mathbb{R}}
$$

Since $\mu_{L}\left(\left\{r_{n}\right\}\right)=0$, we have

$$
\mu_{L}(\mathbb{Q})=\sum_{n=1}^{\infty} \mu_{L}\left(\left\{r_{n}\right\}\right)=0 .
$$

Thus, \mathbb{Q} is a null set in $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_{L}\right)$.
(b) Since $\left\{r_{n}\right\}$ is closed and $\mathbb{Q}=\bigcup_{n=1}^{\infty}\left\{r_{n}\right\}, \mathbb{Q}$ is a F_{σ}-set.
(c) By $(\mathrm{a}), \mu_{L}(\mathbb{Q})=0$. This implies that, for every $n \in \mathbb{N}$, there exists an open set G_{n} such that

$$
G_{n} \supset \mathbb{Q} \text { and } \mu_{L}\left(G_{n}\right)<\frac{1}{n} .
$$

If $G=\bigcap_{n=1}^{\infty} G_{n}$ then G is a G_{δ}-set and $G \supset \mathbb{Q}$. Furthermore,

$$
\mu_{L}(G) \leq \mu_{L}\left(G_{n}\right)<\frac{1}{n}, \quad \forall n \in \mathbb{N}
$$

This implies that $\mu_{L}(G)=0$.
(d) By (b), \mathbb{Q} is a F_{σ}-set, so $\mathbb{R} \backslash \mathbb{Q}$, the set of all irrational numbers in \mathbb{R}, is a G_{δ}-set.

Problem 20
Let $E \in \mathcal{M}_{L}$ with $\mu_{L}(E)>0$. Prove that for every $\alpha \in(0,1)$, there exists a finite open interval I such that

$$
\alpha \mu_{L}(I) \leq \mu_{L}(E \cap I) \leq \mu_{L}(I)
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

- Consider first the case where $0<\mu_{L}(E)<\infty$. For any $\alpha \in(0,1)$, set $\frac{1}{\alpha}=1+a$. Since $a>0,0<\varepsilon=a \mu_{L}(E)<\infty$. By the regularity property of μ_{L}^{*} (Property 7), there exists an open set $O \supset E$ such that ${ }^{1}$

$$
\begin{equation*}
\mu_{L}(O) \leq \mu_{L}(E)+a \mu_{L}(E)=(1+a) \mu_{L}(E)=\frac{1}{\alpha} \mu_{L}(E)<\infty . \tag{i}
\end{equation*}
$$

Now since O is an open set in \mathbb{R}, it is union of a disjoint sequence $\left(I_{n}\right)$ of open intervals in \mathbb{R} :

$$
\begin{equation*}
O=\bigcup_{n \in \mathbb{N}} I_{n} \Longrightarrow \mu_{L}(O)=\sum_{n \in \mathbb{N}} \mu_{L}\left(I_{n}\right) . \tag{ii}
\end{equation*}
$$

Since $E \subset O$, we have

$$
\begin{equation*}
\mu_{L}(E)=\mu_{L}(E \cap O)=\mu_{L}\left(E \cap \bigcup_{n \in \mathbb{N}} I_{n}\right)=\sum_{n \in \mathbb{N}} \mu_{L}\left(E \cap I_{n}\right) . \tag{iii}
\end{equation*}
$$

From (i), (ii) and (iii) it follows that

$$
\sum_{n \in \mathbb{N}} \mu_{L}\left(I_{n}\right) \leq \frac{1}{\alpha} \sum_{n \in \mathbb{N}} \mu_{L}\left(E \cap I_{n}\right)
$$

Note that all terms in this inequality are positive, so that there exists at least one $n_{0} \in \mathbb{N}$ such that

$$
\mu_{L}\left(I_{n_{0}}\right) \leq \frac{1}{\alpha} \mu_{L}\left(E \cap I_{n_{0}}\right) .
$$

Since $\mu_{L}(O)$ is finite, all intervals I_{n} are finite intervals in \mathbb{R}. Let $I:=I_{n_{0}}$, then I is a finite open interval satisfying conditions:

$$
\alpha \mu_{L}(I) \leq \mu_{L}(E \cap I) \leq \mu_{L}(I)
$$

- Now consider that case $\mu_{L}(E)=\infty$. By the σ-finiteness of the Lebesgue measure space, there exists a measurable subset E_{0} of E such that $0<\mu_{L}\left(E_{0}\right)<\infty$. Then using the first part of the solution, we obtain

$$
\alpha \mu_{L}(I) \leq \mu_{L}\left(E_{0} \cap I\right) \leq \mu_{L}(E \cap I) \leq \mu_{L}(I)
$$

[^0]
www.MATHVN.com - Anh Quang Le, PhD

28
CHAPTER 2. LEBESGUE MEASURE ON \mathbb{R}

Problem 21

Let f be a real-valued function on (a, b) such that f^{\prime} exists and satisfies

$$
\left|f^{\prime}(x)\right| \leq M \text { for all } x \in(a, b) \text { and for some } M \geq 0
$$

Show that for every $E \subset(a, b)$ we have

$$
\mu_{L}^{*}(f(E)) \leq M \mu_{L}^{*}(E)
$$

Solution

If $M=0$ then $f^{\prime}(x)=0, \forall x \in(a, b)$. Hence, $f(x)=y_{0}, \forall x \in(a, b)$. Thus, for any $E \subset(a, b)$ we have

$$
\mu_{L}^{*}(f(E))=0 .
$$

The inequality holds. Suppose $M>0$. For all $x, y \in(a, b)$, by the Mean Value Theorem, we have

$$
\begin{aligned}
|f(x)-f(y)| & =|x-y|\left|f^{\prime}(c)\right|, \text { for some } c \in(a, b) \\
& \leq M|x-y| \cdot(*)
\end{aligned}
$$

By definition of the outer measure, for any $E \subset(a, b)$ we have

$$
\mu_{L}^{*}(E)=\inf \sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right),
$$

where $\left\{I_{n}=\left(a_{n}, b_{n}\right), n \in \mathbb{N}\right\}$ is a covering class of E. By $\left(^{*}\right)$ we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right| & \leq M \sum_{n=1}^{\infty}\left|b_{n}-a_{n}\right| \\
& \leq M \inf \sum_{n=1}^{\infty}\left|b_{n}-a_{n}\right| \\
& \leq M \mu_{L}^{*}(E) .
\end{aligned}
$$

Infimum takes over all covering classes of E. Thus,

$$
\mu_{L}^{*}(f(E))=\inf \sum_{n=1}^{\infty}\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right| \leq M \mu_{L}^{*}(E)
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 22

(a) Let $E \subset \mathbb{R}$. Show that $\mathcal{F}=\left\{\varnothing, E, E^{c}, \mathbb{R}\right\}$ is the σ-algebra of subsets of \mathbb{R} generated by $\{E\}$
(b) If \mathcal{S} and \mathcal{T} are collections of subsets of \mathbb{R}, then

$$
\sigma(\mathcal{S} \cup \mathcal{T})=\sigma(\mathcal{S}) \cup \sigma(\mathcal{T})
$$

Is the statement true? Why?

Solution

(a)It is easy to check that \mathcal{F} is a σ-algebra.

Note first that $\{E\} \subset \mathcal{F}$. Hence

$$
\begin{equation*}
\sigma(\{E\}) \subset \mathcal{F} \tag{i}
\end{equation*}
$$

On the other hand, since $\sigma(\{E\})$ is a σ-algebra, so $\varnothing, \mathbb{R} \in \sigma(\{E\})$. Also, since $E \in \sigma(\{E\})$, so $E^{c} \in \sigma(\{E\})$. Hence

$$
\begin{equation*}
\mathcal{F} \subset \sigma(\{E\}) \tag{ii}
\end{equation*}
$$

From (i) and (ii) it follows that

$$
\mathcal{F}=\sigma(\{E\})
$$

(b) No. Here is why.

Take $\mathcal{S}=\{(, 1]\}$ and $\mathcal{T}=\{(1,2]\}$. Then, by part (a),

$$
\sigma(\mathcal{S})=\left\{\varnothing,(0,1],(0,1]^{c}, \mathbb{R}\right\} \quad \text { and } \sigma(\mathcal{T})=\left\{\varnothing,(1,2],(1,2]^{c}, \mathbb{R}\right\}
$$

Therefore

$$
\sigma(\mathcal{S}) \cup \sigma(\mathcal{T})=\left\{\varnothing,(0,1],(0,1]^{c},(1,2],(1,2]^{c}, \mathbb{R}\right\}
$$

We have

$$
(0,1] \cup(1,2]=(0,2] \notin \sigma(\mathcal{S}) \cup \sigma(\mathcal{T}) .
$$

Hence $\sigma(\mathcal{S}) \cup \sigma(\mathcal{T})$ is not a σ-algebra. But, by definition, $\sigma(\mathcal{S} \cup \mathcal{T})$ is a σ-algebra. And hence it cannot be equal to $\sigma(\mathcal{S}) \cup \sigma(\mathcal{T})$.

Problem 23

Consider $\mathcal{F}=\left\{E \in \mathbb{R}\right.$: either E is countable or E^{c} is countable $\}$.
(a) Show that \mathcal{F} is a σ-algebra and \mathcal{F} is a proper sub- σ-algebra of the σ-algebra $\mathcal{B}_{\mathbb{R}}$.
(b) Show that \mathcal{F} is the σ-algebra generated by $\{\{x\}: x \in \mathbb{R}\}$.
(c) Find a measure $\lambda: \mathcal{F} \rightarrow[0, \infty]$ such that the only λ-null set is \varnothing.

www.MATHVN.com - Anh Quang Le, PhD

Solution

(a) We check conditions of a σ-algebra:

- It is clear that \varnothing is countable, so $\varnothing \in \mathcal{F}$.
- Suppose $E \in \mathcal{F}$. Then $E \subset \mathbb{R}$ and E is countable or E^{c} is countable. This is equivalent to $E^{c} \subset \mathbb{R}$ and E^{c} is countable or E is countable. Thus,

$$
E \in \mathcal{F} \Rightarrow E^{c} \in \mathcal{F}
$$

- Suppose $E_{1}, E_{2}, \ldots \in \mathcal{F}$. Either all E_{n} 's are countable, so $\bigcup_{n=1}^{\infty} E_{n}$ is countable. Hence $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{F}$. Or there exists some $E_{n_{0}} \in \mathcal{F}$ which is not countable. By definition, $E_{n_{0}}^{c}$ must be countable. Now

$$
\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\bigcap_{n=1}^{\infty} E_{n}^{c} \subset E_{n_{0}}
$$

This implies that $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}$ is countable. Thus

$$
\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{F}
$$

Finally, \mathcal{F} is a σ-algebra.
Recall that $\mathcal{B}_{\mathbb{R}}$ is the σ-algebra generated by the family of open sets in \mathbb{R}. It is also generated by the family of closed sets in \mathbb{R}. Now suppose $E \in \mathcal{F}$. If E is countable then we can write

$$
E=\left\{x_{1}, x_{2}, \ldots\right\}=\bigcup_{n=1}^{\infty}\left\{x_{n}\right\}
$$

Each $\left\{x_{n}\right\}$ is a closed set in \mathbb{R}, so belongs to $\mathcal{B}_{\mathbb{R}}$. Hence $E \in \mathcal{B}_{\mathbb{R}}$. Therefore,

$$
\mathcal{F} \subset \mathcal{B}_{\mathbb{R}}
$$

\mathcal{F} is a proper subset of $\mathcal{B}_{\mathbb{R}}$. Indeed, $[0,1] \in \mathcal{B}_{\mathbb{R}}$ and $[0,1] \notin \mathcal{F}$.
(b) Let $\mathcal{S}=\{\{x\}: x \in \mathbb{R}\}$. Clearly, $\mathcal{S} \subset \mathcal{F}$, and so

$$
\sigma(\mathcal{S}) \subset \mathcal{F}
$$

Now take $E \in \mathcal{F}$ and $E \neq \varnothing$. If E is countable then we can write

$$
E=\bigcup_{n=1}^{\infty} \underbrace{\left\{x_{n}\right\}}_{\in \mathcal{S}} \in \sigma(\mathcal{S}) .
$$

Hence

$$
\mathcal{F} \subset \sigma(\mathcal{S})
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus

$$
\sigma(\mathcal{S})=\mathcal{F}
$$

(c) Define the set function $\lambda: \mathcal{F} \rightarrow[0, \infty]$ by

$$
\lambda(E)= \begin{cases}|E| & \text { if } E \text { is finite } \\ \infty & \text { otherwise }\end{cases}
$$

We can check that λ is a measure. If $E \neq \varnothing$ then $\lambda(E)>0$ for every $E \in \mathcal{F}$.

Problem 24

For $E \in \mathfrak{M}_{L}$ with $\mu_{L}(E)<\infty$, define a real-valued function φ_{E} on \mathbb{R} by setting

$$
\varphi_{E}(x):=\mu_{L}(E \cap(-\infty, x]) \text { for } x \in \mathbb{R}
$$

(a) Show that φ_{E} is an increasing function on \mathbb{R}.
(b) Show that φ_{E} satisfies the Lipschitz condition on \mathbb{R}, that is,

$$
\left|\varphi_{E}\left(x^{\prime}\right)-\varphi_{E}\left(x^{\prime \prime}\right)\right| \leq\left|x^{\prime}-x^{\prime \prime}\right| \text { for } x^{\prime}, x^{\prime \prime} \in \mathbb{R}
$$

Solution

(a) Let $x, y \in \mathbb{R}$. Suppose $x<y$. It is clear that $(-\infty, x] \subset(-\infty, y]$. Hence, $E \cap(-\infty, x] \subset E \cap(-\infty, y]$ for $E \in \mathfrak{M}_{L}$. By the monoticity of μ_{L} we have

$$
\varphi_{E}(x)=\mu_{L}(E \cap(-\infty, x]) \leq \mu_{L}(E \cap(-\infty, y])=\varphi_{E}(y)
$$

Thus φ_{E} is increasing on \mathbb{R}.
(b) Suppose $x^{\prime}<x^{\prime \prime}$ we have

$$
E \cap\left(x^{\prime}, x^{\prime \prime}\right]=\left(E \cap\left(-\infty, x^{\prime \prime}\right]\right) \backslash\left(E \cap\left(-\infty, x^{\prime}\right]\right)
$$

It follows that

$$
\begin{aligned}
\varphi_{E}\left(x^{\prime \prime}\right)-\varphi_{E}\left(x^{\prime}\right) & =\mu_{L}\left(E \cap\left(-\infty, x^{\prime \prime}\right]\right)-\mu_{L}\left(E \cap\left(-\infty, x^{\prime}\right]\right) \\
& =\mu_{L}\left(E \cap\left(x^{\prime}, x^{\prime \prime}\right]\right) \\
& \leq \mu_{L}\left(\left(x^{\prime}, x^{\prime \prime}\right]\right)=x^{\prime \prime}-x^{\prime} .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 25
Let E be a Lebesgue measurable subset of \mathbb{R} with $\mu_{L}(E)=1$. Show that there exists a Lebesgue measurable set $A \subset E$ such that $\mu_{L}(A)=\frac{1}{2}$.

Solution

Define the function $f: \mathbb{R} \rightarrow[0,1]$ by

$$
f(x)=\mu_{L}(E \cap(-\infty, x]), x \in \mathbb{R}
$$

By Problem 23, we have

$$
|f(x)-f(y)| \leq|x-y|, \forall x, y \in \mathbb{R}
$$

Hence f is (uniformly) continuous on \mathbb{R}. Since

$$
\lim _{x \rightarrow-\infty} f(x)=0 \text { and } \lim _{x \rightarrow \infty} f(x)=1,
$$

by the Mean Value Theorem, we have

$$
\exists x_{0} \in \mathbb{R} \text { such that } f\left(x_{0}\right)=\frac{1}{2}
$$

Set $A=E \cap\left(-\infty, x_{0}\right]$. Then we have

$$
A \subset E \text { and } \mu_{L}(A)=\frac{1}{2}
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 3

Measurable Functions

Remark:
From now on, measurable means Lebesgue measurable. Also measure means Lebesgue measure, and we write μ instead of μ_{L} for Lebesgue measure.

1. Definition, basic properties

Proposition 6 (Equivalent conditions)
Let f be an extended real-valued function whose domain D is measurable. Then the following statements are equivalent:

1. For each real number a, the set $\{x \in D: f(x)>a\}$ is measurable.
2. For each real number a, the set $\{x \in D: f(x) \geq a\}$ is measurable.
3. For each real number a, the set $\{x \in D: f(x)<a\}$ is measurable.
4. For each real number a, the set $\{x \in D: f(x) \leq a\}$ is measurable.

Definition 11 (Measurable function)
An extended real-valued function f is said to be measurable if its domain is measurable and if it satisfies one of the four statements of Proposition 6.

Proposition 7 (Operations)
Let f, g be two measurable real-valued functions defined on the same domain and c a constant. Then the functions $f+c, c f, f+g$, and $f g$ are also measurable.

Note:
A function f is said to be Borel measurable if for each $\alpha \in \mathbb{R}$ the set $\{x: f(x)>\alpha\}$ is a Borel set. Every Borel measurable function is Lebesgue measurable.
2. Equality almost everywhere

- A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where it fails to hold is a set of measure zero.
- We say that $f=g$ a.e. if f and g have the same domain and $\mu(\{x \in D: f(x) \neq g(x)\})=0$. Also we say that the sequence $\left(f_{n}\right)$ converges to f a.e. if the set $\left\{x: f_{n}(x) \leftrightarrow f(x)\right\}$ is a null set.

www.MATHVN.com - Anh Quang Le, PhD

Proposition 8 (Measurable functions)
If a function f is measurable and $f=g$ a.e., then g is measurable.

3. Sequence of measurable functions

Proposition 9 (Monotone sequence)
Let $\left(f_{n}\right)$ be a monotone sequence of extended real-valued measurable functions on the same measurable domain D. Then $\lim _{n \rightarrow \infty} f_{n}$ exists on D and is measurable.

Proposition 10 Let $\left(f_{n}\right)$ be a sequence of extended real-valued measurable functions on the same measurable domain D. Then $\max \left\{f_{1}, \ldots, f_{n}\right\}, \min \left\{f_{1}, \ldots, f_{n}\right\}, \lim \sup _{n \rightarrow \infty} f_{n}, \liminf _{n \rightarrow \infty} f_{n}, \sup _{n \in \mathbb{N}}, \inf _{n \in \mathbb{N}}$ are all measurable.

Proposition 11 If f is continuous a.e. on a measurable set D, then f is measurable.

Problem 26

Let D be a dense set in \mathbb{R}. Let f be an extended real-valued function on \mathbb{R} such that $\{x: f(x)>\alpha\}$ is measurable for each $\alpha \in D$. Show that f is measurable.

Solution

Let β be an arbitrary real number. For each $n \in \mathbb{N}$, there exists $\alpha_{n} \in D$ such that $\beta<\alpha_{n}<\beta+\frac{1}{n}$ by the density of D. Now

$$
\{x: f(x)>\beta\}=\bigcup_{n=1}^{\infty}\left\{x: f(x) \geq \beta+\frac{1}{n}\right\}=\bigcup_{n=1}^{\infty}\left\{x: f(x)>\alpha_{n}\right\} .
$$

Since $\bigcup_{n=1}^{\infty}\left\{x: f(x)>\alpha_{n}\right\}$ is measurable (as countable union of measurable sets), $\{x: f(x)>\beta\}$ is measurable. Thus, f is measurable.

Problem 27

Let f be an extended real-valued measurable function on \mathbb{R}. Prove that $\{x$: $f(x)=\alpha\}$ is measurable for any $\alpha \in \overline{\mathbb{R}}$.

www.MATHVN.com - Anh Quang Le, PhD

Solution

- For $\alpha \in \mathbb{R}$, we have

$$
\{x: f(x)=\alpha\}=\underbrace{\{x: f(x) \leq \alpha\}}_{\text {measurable }} \backslash \underbrace{\{x: f(x)<\alpha\}}_{\text {measurable }} .
$$

Thus $\{x: f(x)=\alpha\}$ is measurable.

- For $\alpha=\infty$, we have

$$
\{x: f(x)=\infty\}=\mathbb{R} \backslash\{x: f(x)<\infty\}=\mathbb{R} \backslash \bigcup_{n \in \mathbb{N}} \underbrace{\{x: f(x) \leq n\}}_{\text {measurable }} .
$$

Thus $\{x: f(x)=\infty\}$ is measurable.

- For $\alpha=-\infty$, we have

$$
\{x: f(x)=-\infty\}=\mathbb{R} \backslash\{x: f(x)>-\infty\}=\mathbb{R} \backslash \bigcup_{n \in \mathbb{N}} \underbrace{\{x: f(x) \geq-n\}}_{\text {measurable }} .
$$

Thus $\{x: f(x)=\infty\}$ is measurable.

Problem 28

(a). Let D and E be measurable sets and f a function with domain $D \cup E$. Show that f is measurable if and only if its restriction to D and E are measurable.
(b). Let f be a function with measurable domain D. Show that f is measurable if and only if the function g defined by

$$
g(x)= \begin{cases}f(x) & \text { for } x \in D \\ 0 & \text { for } x \notin D\end{cases}
$$

is measurable.

Solution

(a) Suppose that f is measurable. Since D and E are measurable subsets of $D \cup E$, the restrictions $\left.f\right|_{D}$ and $\left.f\right|_{E}$ are measurable.
Conversely, suppose $\left.f\right|_{D}$ and $\left.f\right|_{E}$ are measurable. For any $\alpha \in \mathbb{R}$, we have

$$
\{x: f(x)>\alpha\}=\left\{x \in D:\left.f\right|_{D}(x)>\alpha\right\} \cup\left\{x \in E:\left.f\right|_{E}(x)>\alpha\right\} .
$$

Each set on the right hand side is measurable, so $\{x: f(x)>\alpha\}$ is measurable. Thus, f is measurable.
(b) Suppose that f is measurable. If $\alpha \geq 0$, then $\{x: g(x)>\alpha\}=\{x: f(x)>\alpha\}$, which is measurable. If $\alpha<0$, then $\{x: g(x)>\alpha\}=\{x: f(x)>\alpha\} \cup D^{c}$, which is measurable. Hence, g is measurable.
Conversely, suppose that g is measurable. Since $f=\left.g\right|_{D}$ and D is measurable, f is measurable.

Problem 29

Let f be measurable and B a Borel set. Then $f^{-1}(B)$ is a measurable set.

Solution

Let \mathcal{C} be the collection of all sets E such that $f^{-1}(E)$ is measurable. We show that \mathcal{C} is a σ-algebra. Suppose $E \in \mathcal{C}$. Since

$$
f^{-1}\left(E^{c}\right)=\left(f^{-1}(E)\right)^{c}
$$

which is measurable, so $E^{c} \in \mathcal{C}$. Suppose $\left(E_{n}\right)$ is a sequence of sets in \mathcal{C}. Since

$$
f^{-1}\left(\bigcup_{n} E_{n}\right)=\bigcup_{n} f^{-1}\left(E_{n}\right)
$$

which is measurable, so $\bigcup_{n} E_{n} \in \mathcal{C}$. Thus, \mathcal{C} is a σ-algebra.
Next, we show that all intervals (a, b), for any extended real numbers a, b with $a<b$, belong to \mathcal{C}. Since f is measurable, $\{x: f(x)>a\}$ and $\{x: f(x)<b\}$ are measurable. It follows that (a, ∞) and $(-\infty, b) \in \mathcal{C}$. Furtheremore, we have

$$
(a, b)=(-\infty, b) \cap(a, \infty)
$$

so $(a, b) \in \mathcal{C}$. Thus, \mathcal{C} is a σ-algebra containing all open intervals, so it contains all Borel sets. Hence $f^{-1}(B)$ is measurable.

Problem 30

Show that if f is measurable real-valued function and g a continuous function defined on \mathbb{R}, then $g \circ f$ is measurable.

Solution

For any $\alpha \in \mathbb{R}$,

$$
\{x:(g \circ f)(x)>\alpha\}=(g \circ f)^{-1}((\alpha, \infty))=f^{-1}\left(g^{-1}((\alpha, \infty))\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

By the continuity of $g, g^{-1}((\alpha, \infty))$ is an open set, so a Borel set. By Problem 24, the last set is measurable. Thus, $g \circ f$ is measurable.

Problem 31

Let f be an extended real-valued function defined on a measurable set $D \subset \mathbb{R}$.
(a) Show that if $\{x \in D: f(x)<r\}$ is measurable in \mathbb{R} for every $r \in \mathbb{Q}$, then f is measurable on D.
(b) What subsets of \mathbb{R} other than \mathbb{Q} have this property?
(c) Show that if f is measurable on D, then there exists a countable sub-collection $\mathcal{C} \subset \mathcal{M}_{L}$, depending on f, such that f is $\sigma(\mathcal{C})$-measurable on D.
(Note: $\sigma(\mathcal{C})$ is the σ-algebra generated by \mathcal{C}.)

Solution

(a) To show that f is measurable on D, we show that $\{x \in D: f(x)<a\}$ is measurable for every $a \in \mathbb{R}$. Let $I=\{r \in \mathbb{Q}: r<a\}$. Then I is countable, and we have

$$
\{x \in D: f(x)<a\}=\bigcup_{r \in I}\{x \in D: f(x)<r\} .
$$

Since $\{x \in D: f(x)<r\}$ is measurable, $\bigcup_{r \in I}\{x \in D: f(x)<r\}$ is measurable. Thus, $\{x \in D: f(x)<a\}$ is measurable.
(b) Here is the answer to the question:

Claim 1 : If $E \subset \mathbb{R}$ is dense in \mathbb{R}, then E has the property in (a), that is, if $\{x \in D: f(x)<r\}$ is measurable for every $r \in E$ then f is measurable on D.
Proof.
Given any $a \in \mathbb{R}$, the interval $(a-1, a)$ intersects E since E is dense. Pick some $r_{1} \in E \cap(a-1, a)$. Now the interval $\left(r_{1}, a\right)$ intersects E for the same reason. Pick some $r_{2} \in E \cap\left(r_{1}, a\right)$. Repeating this process, we obtain an increasing sequence $\left(r_{n}\right)$ in E which converges to a.
By assumption, $\left\{x \in D: f(x)<r_{n}\right\}$ is measurable, so we have

$$
\{x \in D: f(x)<a\}=\bigcup_{n \in \mathbb{N}}\left\{x \in D: f(x)<r_{n}\right\} \text { is measurable } .
$$

Thus, f is measurable on D.
Claim 2 : If $E \subset \mathbb{R}$ is not dense in \mathbb{R}, then E does not have the property in (a). Proof.
Since E is not dense in \mathbb{R}, there exists an interval $[a, b] \subset E$. Let F be a non

www.MATHVN.com - Anh Quang Le, PhD

measurable set in \mathbb{R}. We define a function f as follows:

$$
f(x)= \begin{cases}a & \text { if } x \in F^{c} \\ b & \text { if } x \in F\end{cases}
$$

For $r \in E$, by definition of F, we observe that

- If $r<a$ then $f^{-1}([-\infty, r))=\emptyset$.
- If $r>b$ then $f^{-1}([-\infty, r))=\overline{\mathbb{R}}$.
- If $r=\frac{a+b}{2}$ then $f^{-1}([-\infty, r))=F^{c}$.

Since F is non measurable, F^{c} is also non measurable. Through the above observation, we see that

$$
\left\{x \in D: f(x)<\frac{a+b}{2}\right\} \text { non measurable. }
$$

Thus, f is not measurable.
Conclusion : Only subsets of \mathbb{R} which are dense in \mathbb{R} have the property in (a).
(c) Let $\mathcal{C}=\left\{C_{r}\right\}_{r \in \mathbb{Q}}$ where $C_{r}=\{x \in D: f(x)<r\}$ for every $r \in \mathbb{Q}$. Clearly, \mathcal{C} is a countable family of subsets of \mathbb{R}. Since f is measurable, C_{r} is measurable. Hence, $\mathcal{C} \subset \mathcal{M}_{L}$. Since \mathcal{M}_{L} is a σ-algebra, by definition, we must have $\sigma(\mathcal{C}) \subset \mathcal{M}_{L}$. Let $a \in \mathbb{R}$. Then

$$
\{x \in D: f(x)<a\}=\bigcup_{r<a}\{x \in D: f(x)<r\}=\bigcup_{r<a} C_{r} .
$$

It follows that $\{x \in D: f(x)<a\} \in \sigma(\mathcal{C})$.
Thus, f is $\sigma(\mathcal{C})$-measurable on D.

Problem 32

Show that the following functions defined on \mathbb{R} are all Borel measurable, and hence Lebesgue measurable also on \mathbb{R} :

$$
\begin{gathered}
\text { (a) } f(x)=\left\{\begin{array}{ll}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational. }
\end{array} \quad \text { (b) } g(x)= \begin{cases}x & \text { if } x \text { is rational } \\
-x & \text { if } x \text { is irrational. }\end{cases} \right. \\
\left(\text { (c) } h(x)= \begin{cases}\sin x & \text { if } x \text { is rational } \\
\cos x & \text { if } x \text { is irrational. }\end{cases} \right.
\end{gathered}
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

(a) For any $a \in \mathbb{R}$, let $E=\{x \in D: f(x)<a\}$.

- If $a>1$ then $E=\mathbb{R}$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).
- If $0<a \leq 1$ then $E=\mathbb{Q}$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).
- If $a \leq 0$ then $E=\varnothing$, so $E \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable).

Thus, f is Borel measurable.
(b) Consider g_{1} defined on \mathbb{Q} by $g_{1}(x)=x$, then $\left.g\right|_{\mathbb{Q}}=g_{1}$. Consider g_{2} defined on $\mathbb{R} \backslash \mathbb{Q}$ by $g(x)=-x$, then $\left.g\right|_{\mathbb{R} \backslash \mathbb{Q}}=g_{2}$. Notice that $\mathbb{R}, \mathbb{R} \backslash \mathbb{Q} \in \mathcal{B}_{\mathbb{R}}$ (Borel measurable). For any $a \in \mathbb{R}$, we have

$$
\left\{x \in D: f_{1}(x)<a\right\}=[-\infty, a) \cap \mathbb{Q} \in \mathcal{B}_{\mathbb{R}} \text { (Borel measurable) }
$$

and

$$
\left\{x \in D: f_{2}(x)<a\right\}=[-\infty, a) \cap(\mathbb{R} \backslash \mathbb{Q}) \in \mathcal{B}_{\mathbb{R}} \quad \text { (Borel measurable). }
$$

Thus, g is Borel measurable.
(c) Use the same way as in (b).

Problem 33

Let f be a real-valued increasing function on \mathbb{R}. Show that f is Borel measurable, and hence Lebesgue measurable also on \mathbb{R}.

Solution

For any $a \in \mathbb{R}$, let $E=\{x \in D: f(x) \geq a\}$. Let $\alpha=\inf E$. Since f is increasing,

- if $\operatorname{Im}(f) \subset(-\infty, a)$ then $E=\varnothing$.
- if $\operatorname{Im}(f) \nsubseteq(-\infty, a)$ then E is either (α, ∞) or $[\alpha, \infty)$.

Since $\varnothing,(\alpha, \infty),[\alpha, \infty)$ are Borel sets, so f is Borel measurable.

Problem 34

If $\left(f_{n}\right)$ is a sequence of measurable functions on $D \subset \mathbb{R}$, then show that

$$
\left\{x \in D: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\} \text { is measurable. }
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

Recall that if f_{n} 's are measurable, then $\limsup _{n \rightarrow \infty} f_{n}, \liminf _{n \rightarrow \infty} f_{n}$ and $g(x)=$ $\limsup _{n \rightarrow \infty} f_{n}-\liminf _{n \rightarrow \infty} f_{n}$ are also measurable, and if h is measurable then $\{x \in D: h(x)=\alpha\}$ is measurable (Problem 22).
Now we have

$$
E=\left\{x \in D: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\}=\{x \in D: g(x)=0\} .
$$

Thus, E is measurable.

Problem 35

(a) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable then $g \circ f$ is measurable.
(b) If f is measurable then $|f|$ is measurable. Does the converse hold?

Solution

(a) For any $a \in \mathbb{R}$, then

$$
\begin{aligned}
E=\{x:(g \circ f)(x)<a\} & =(g \circ f)^{-1}(-\infty, a) \\
& =f^{-1}\left(g^{-1}(-\infty, a)\right) .
\end{aligned}
$$

Since g is continuous, $g^{-1}(-\infty, a)$ is open. Then there is a family of open disjoint intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that $g^{-1}(-\infty, a)=\bigcup_{n \in \mathbb{N}} I_{n}$. Hence,

$$
E=f^{-1}\left(\bigcup_{n \in \mathbb{N}} I_{n}\right)=\bigcup_{n \in \mathbb{N}} f^{-1}\left(I_{n}\right)
$$

Since f is measurable, $f^{-1}\left(I_{n}\right)$ is measurable. Hence E is measurable. This tells us that $g \circ f$ is measurable.
(b) If $g(u)=|u|$ then g is continuous. We have

$$
(g \circ f)(x)=g(f(x))=|f(x)|
$$

By part (a), $g \circ f=|f|$ is measurable.
The converse is not true.
Let E be a non-measurable subset of \mathbb{R}. Consider the function:

$$
f(x)= \begin{cases}1 & \text { if } x \in E \\ -1 & \text { if } x \notin E\end{cases}
$$

Then $f^{-1}\left(\frac{1}{2}, \infty\right)=E$, which is not measurable. Since $\left(\frac{1}{2}, \infty\right)$ is open, so f is not measurable, while $|f|=1$ is measurable.

www.MATHVN.com - Anh Quang Le, PhD

Problem 36

Let $\left(f_{n}: n \in \mathbb{N}\right)$ and f be an extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ on D. Then for every $\alpha \in \mathbb{R}$ prove that:
(i) $\mu\{x \in D: f(x)>\alpha\} \leq \liminf _{n \rightarrow \infty} \mu\left\{x \in D: f_{n}(x) \geq \alpha\right\}$
(ii) $\mu\{x \in D: f(x)<\alpha\} \leq \liminf _{n \rightarrow \infty} \mu\left\{x \in D: f_{n}(x) \leq \alpha\right\}$.

Solution

Recall that, for any sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of measurable sets,

$$
\begin{aligned}
& \mu\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right), \quad(*) \\
& \liminf _{n \rightarrow \infty} E_{n}=\bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} E_{k}=\lim _{n \rightarrow \infty} \bigcap_{k \geq n} E_{k} .
\end{aligned}
$$

Now for every $\alpha \in \mathbb{R}$, let $E_{k}=\left\{x \in D: f_{k}(x) \geq \alpha\right\}$ for each $k \in \mathbb{N}$. Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} E_{n} & =\lim _{n \rightarrow \infty} \bigcap_{k \geq n} E_{k} \\
& =\lim _{n \rightarrow \infty} \bigcap_{k \geq n}\left\{x \in D: f_{k}(x) \geq \alpha\right\} \\
& =\{x \in D: f(x)>\alpha\} \text { since } f_{k}(x) \rightarrow f(x) \text { on } D .
\end{aligned}
$$

Using (*) we get

$$
\mu\{x \in D: f(x)>\alpha\} \leq \liminf _{n \rightarrow \infty} \mu\left\{x \in D: f_{n} \geq \alpha\right\}
$$

For the second inequality, we use the similar argument.
Let $F_{k}=\left\{x \in D: f_{k}(x) \leq \alpha\right\}$ for each $k \in \mathbb{N}$. Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} E_{n} & =\lim _{n \rightarrow \infty} \bigcap_{k \geq n} F_{k} \\
& =\lim _{n \rightarrow \infty} \bigcap_{k \geq n}\left\{x \in D: f_{k}(x) \leq \alpha\right\} \\
& =\{x \in D: f(x)<\alpha\} \text { since } f_{k}(x) \rightarrow f(x) \text { on } D .
\end{aligned}
$$

Using (*) we get

$$
\mu\{x \in D: f(x)<\alpha\} \leq \liminf _{n \rightarrow \infty} \mu\left\{x \in D: f_{n} \leq \alpha\right\}
$$

www.MATHVN.com - Anh Quang Le, PhD

Simple functions

Definition 12 (Simple function)
A function $\varphi: X \rightarrow \mathbb{R}$ is simple if it takes only a finite number of different values.
Definition 13 (Canonical representation)
Let φ be a simple function on X. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ the set of distinct valued assumed by φ on D. Let $D_{i}=\left\{x \in X: \varphi(x)=a_{i}\right\}$ for $i=1, \ldots, n$. Then the expression

$$
\varphi=\sum_{i=1}^{n} a_{i} \chi_{D_{i}}
$$

is called the canonical representation of φ.
It is evident that $D_{i} \cap D_{j}=\varnothing$ for $i \neq j$ and $\bigcup_{i=1}^{n} D_{i}=X$.

Problem 37

(a). Show that

$$
\begin{aligned}
\chi_{A \cap B} & =\chi_{A} \cdot \chi_{B} \\
\chi_{A \cup B} & =\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B} \\
\chi_{A^{c}} & =1-\chi_{A} .
\end{aligned}
$$

(b). Show that the sum and product of two simple functions are simple functions.

Solution

(a). We have

$$
\begin{aligned}
\chi_{A \cap B}(x)=1 & \Longleftrightarrow x \in A \text { and } x \in B \\
& \Longleftrightarrow \chi_{A}(x)=1=\chi_{B}(x) .
\end{aligned}
$$

Thus,

$$
\chi_{A \cap B}=\chi_{A} \cdot \chi_{B}
$$

We have

$$
\chi_{A \cup B}(x)=1 \Longleftrightarrow x \in A \cup B .
$$

www.MATHVN.com - Anh Quang Le, PhD

If $x \in A \cap B$ then $\chi_{A}(x)+\chi_{B}(x)-\chi_{A}(x) \cdot \chi_{B}(x)=1+1-1=1$.
If $x \notin A \cap B$, then $x \in A \backslash B$ or $x \in B \backslash A$. Then $\chi_{A}(x)+\chi_{B}(x)=1$ and $\chi_{A} \cdot \chi_{B} \chi_{A}(x)+\chi_{B}(x)=0$.
Also,

$$
\chi_{A \cup B}(x)=0 \Longleftrightarrow x \notin A \cup B .
$$

Then

$$
\chi_{A}(x)=\chi_{B}(x)=\chi_{A}(x) \cdot \chi_{B}(x)=0
$$

Thus,

$$
\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B}
$$

If $\chi_{A^{c}}(x)=1$, then $x \notin A$, so $\chi_{A}(x)=0$.
If $\chi_{A^{c}}(x)=0$, then $x \in A$, so $\chi_{A}(x)=1$. Thus,

$$
\chi_{A^{c}}=1-\chi_{A} .
$$

(b). Let φ be a simple function having values a_{1}, \ldots, a_{n}. Then

$$
\varphi=\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \text { where } A_{i}=\left\{x: \varphi(x)=a_{i}\right\}
$$

Similarly, if ψ is a simple function having values b_{1}, \ldots, b_{m}. Then

$$
\psi=\sum_{j=1}^{m} b_{j} \chi_{B_{j}} \text { where } B_{j}=\left\{x: \psi(x)=b_{j}\right\}
$$

Define $C_{i j}:=A_{i} \cap B_{j}$. Then

$$
A_{i} \subset X=\bigcup_{j=1}^{m} B_{j} \text { and so } A_{i}=A_{i} \cap \bigcup_{j=1}^{m} B_{j}=\bigcup_{j=1}^{m} C_{i j}
$$

Similarly, we have

$$
B_{j}=\bigcup_{i=1}^{n} C_{i j}
$$

Since the $C_{i j}$'s are disjoint, this means that (see part (a))

$$
\chi_{A_{i}}=\sum_{j=1}^{m} \chi_{C_{i j}} \text { and } \chi_{B_{j}}=\sum_{i=1}^{n} \chi_{C_{i j}} .
$$

Thus

$$
\varphi=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} \chi_{C_{i j}} \text { and } \psi=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} \chi_{C_{i j}} .
$$

www.MATHVN.com - Anh Quang Le, PhD

Hence

$$
\varphi+\psi=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+b_{j}\right) \chi_{C_{i j}} \text { and } \varphi \psi=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \chi_{C_{i j}} .
$$

They are simple function.

Problem 38

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a simple function defined by

$$
\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \text { where } A_{i}=\left\{x \in \mathbb{R}: \varphi(x)=a_{i}\right\}
$$

Prove that φ is measurable if and only if all the A_{i} 's are measurable.

Solution

Assume that A_{i} is measurable for all $i=1, \ldots, n$. Then for any $c \in \mathbb{R}$, we have

$$
\{x: \varphi(x)>c\}=\bigcup_{a_{i}>c} A_{i} .
$$

Since every A_{i} is measurable, $\bigcup_{a_{i}>c} A_{i}$ is measurable. Thus $\{x: \varphi(x)>c\}$ is measurable. By definition, φ is measurable.
Conversely, suppose φ is measurable. We can suppose $a_{1}<a_{2}<\ldots<a_{n}$. Given $j \in\{1,2, \ldots, n\}$, choose c_{1} and c_{2} such that $a_{j-1}<c_{1}<a_{j}<c_{2}<a_{j+1}$. (If $j=1$ or $j=n$, part of this requirement is empty.) Then

$$
\begin{aligned}
A_{j} & =\left(\bigcup_{a_{i}>c_{1}} A_{i}\right) \backslash\left(\bigcup_{a_{i}>c_{2}} A_{i}\right) \\
& =\underbrace{\left\{x: \varphi(x)>c_{1}\right\}}_{\text {measurable }} \backslash \underbrace{\left\{x: \varphi(x)>c_{2}\right\}}_{\text {measurable }} .
\end{aligned}
$$

Thus, A_{j} is measurable for all $j \in\{1,2, \ldots, n\}$.

www.MATHVN.com - Anh Quang Le, PhD

Chapter 4

Convergence a.e. and Convergence in Measure

1. Convergence almost everywhere

Definition 14 Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$.

1. We say that $\lim _{n \rightarrow \infty} f_{n}$ exists a.e. on D if there exists a null set N such that $N \subset D$ and $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in D \backslash N$.
2. We say that $\left(f_{n}\right)$ converges a.e. on D if $\lim _{n \rightarrow \infty} f_{n}(x)$ exists and $\lim _{n \rightarrow \infty} f_{n}(x) \in \mathbb{R}$ for every $x \in D \backslash N$.

Proposition 12 (Uniqueness)
Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let g_{1} and g_{2} be two extended real-valued measurable functions on D. Then

$$
\left[\lim _{n \rightarrow \infty} f_{n}=g_{1} \text { a.e. on } D \text { and } \lim _{n \rightarrow \infty} f_{n}=g_{2} \text { a.e. on } D\right] \Longrightarrow g_{1}=g_{2} \text { a.e. on } D .
$$

Theorem 1 (Borel-Cantelli Lemma)
For any sequence $\left(A_{n}\right)$ of measurable subsets in \mathbb{R}, we have

$$
\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)<\infty \Longrightarrow \mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0
$$

Definition 15 (Almost uniform convergence)
Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$ and f a real-valued measurable functions on D. We say that $\left(f_{n}\right)$ converges a.u. on D to f if for every $\eta>0$ there exists a measurable set $E \subset D$ such that $\mu(E)<\eta$ and $\left(f_{n}\right)$ converges uniformly to f on $D \backslash E$.

Theorem 2 (Egoroff)
Let D be a measurable set with $\mu(D)<\infty$. Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on D and f a real-valued measurable functions on D. If $\left(f_{n}\right)$ converges to f a.e. on D, then $\left(f_{n}\right)$ converges to f a.u. on D.

www.MATHVN.com - Anh Quang Le, PhD

46 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

2. Convergence in measure

Definition 16 Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. We say that $\left(f_{n}\right)$ converges in measure μ on D if there exists a real-valued measurable function f on D such that for every $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \mu\left\{D:\left|f_{n}-f\right| \geq \varepsilon\right\}:=\lim _{n \rightarrow \infty} \mu\left\{x \in D:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}=0
$$

That is,

$$
\forall \varepsilon>0, \forall \eta>0, \exists N(\varepsilon, \eta) \in \mathbb{N}: \mu\left\{D:\left|f_{n}-f\right| \geq \varepsilon\right\}<\eta \text { for } n \geq N(\varepsilon, \eta)
$$

We write $f_{n} \xrightarrow{\mu} f$ on D for this convergence.

Proposition 13 (Uniqueness)
Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f and g be two real-valued measurable functions on D. Then

$$
\left[f_{n} \xrightarrow{\mu} f \text { on } D \text { and } f_{n} \xrightarrow{\mu} g \text { on } D\right] \Longrightarrow f=g \text { a.e. on } D .
$$

Proposition 14 (Equivalent conditions)

$$
\begin{align*}
& \text { (1) }\left[f_{n} \xrightarrow{\mu} f \text { on } D\right] \Longleftrightarrow \forall \varepsilon>0, \exists N(\varepsilon) \in \mathbb{N}: \mu\left\{D:\left|f_{n}-f\right| \geq \varepsilon\right\}<\varepsilon \text { for } n \geq N(\varepsilon) . \tag{1}\\
& \text { (2) }\left[f_{n} \xrightarrow{\mu} f \text { on } D\right] \Longleftrightarrow \forall m \in \mathbb{N}, \exists N(m): \mu\left\{D:\left|f_{n}-f\right| \geq \frac{1}{m}\right\}<\frac{1}{m} \text { for } m \geq N(m) .
\end{align*}
$$

3. Convergence a.e. and convergence in measure

Theorem 3 (Lebesgue)
Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f be a real-valued measurable functions on D. Suppose

1. $f_{n} \rightarrow f$ a.e. on D,
2. $\mu(D)<\infty$.

Then $f_{n} \xrightarrow{\mu} f$ on D.

Theorem 4 (Riesz)
Let $\left(f_{n}\right)$ be a sequence extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Let f be a real-valued measurable functions on D. If $f_{n} \xrightarrow{\mu} f$ on D, then there exists a subsequence $\left(f_{n_{k}}\right)$ which converges to f a.e. on D.

www.MATHVN.com - Anh Quang Le, PhD

Problem 39(An exercise to warn up.)

1. Consider the sequence $\left(f_{n}\right)$ defined on \mathbb{R} by $f_{n}=\chi_{[n, n+1]}, n \in \mathbb{N}$ and the function $f \equiv 0$. Does $\left(f_{n}\right)$ converge to f a.e.? a.u.? in measure?
2. Same questions with $f_{n}=n \chi_{\left[0, \frac{1}{n}\right]}$.
(Note: χ_{A} is the characteristic function of the set A. Try to write your solution.)

Problem 40

Let $\left(f_{n}\right)$ be a sequence of extended real-valued measurable functions on X and let f be an extended real-valued function which is finite a.e. on X. Suppose $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on X. Let $\alpha \in[0, \mu(X))$ be arbitrarily chosen. Show that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\mu\left\{X:\left|f_{n}-f\right|<\varepsilon\right\} \geq \alpha$ for $n \geq N$.

Solution

Let Z be a null set such that f is finite on $X \backslash Z$. Since $f_{n} \rightarrow f$ a.e. on $X, f_{n} \rightarrow f$ a.e. on $X \backslash Z$. For every $\varepsilon>0$ we have ${ }^{1}$

$$
\begin{aligned}
& \mu\left(\limsup _{n \rightarrow \infty}\left\{X \backslash Z:\left|f_{n}-f\right| \geq \varepsilon\right\}\right)=0 \\
& \Rightarrow \limsup _{n \rightarrow \infty} \mu\left\{X \backslash Z:\left|f_{n}-f\right| \geq \varepsilon\right\}=0 \\
& \Rightarrow \lim _{n \rightarrow \infty} \mu\left\{X \backslash Z:\left|f_{n}-f\right| \geq \varepsilon\right\}=0
\end{aligned}
$$

The last condition is equivalent to

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mu\left\{X \backslash Z:\left|f_{n}-f\right|<\varepsilon\right\}=\mu(X \backslash Z)=\mu(X) \\
& \Leftrightarrow \forall \eta>0, \exists N \in \mathbb{N}: \mu(X)-\mu\left\{X \backslash Z:\left|f_{n}-f\right|<\varepsilon\right\} \leq \eta \text { for all } n \geq N
\end{aligned}
$$

Let us take $\eta=\mu(X)-\alpha>0$. Then we have

$$
\exists N \in \mathbb{N}: \mu\left\{X \backslash Z:\left|f_{n}-f\right|<\varepsilon\right\} \geq \alpha \text { for all } n \geq N
$$

Since $\left\{X:\left|f_{n}-f\right|<\varepsilon\right\} \supset\left\{X \backslash Z:\left|f_{n}-f\right|<\varepsilon\right\}$, so we have

$$
\forall \varepsilon>0, \exists N \in \mathbb{N}: n \geq N \Rightarrow \mu\left(\left\{X:\left|f_{n}-f\right|<\varepsilon\right\}\right) \geq \alpha
$$

[^1]
www.MATHVN.com - Anh Quang Le, PhD

48 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

Problem 41

(a) Show that the condition

$$
\lim _{n \rightarrow \infty} \mu\left\{x \in D:\left|f_{n}(x)-f(x)\right|>0\right\}=0
$$

implies that $f_{n} \xrightarrow{\mu} f$ on D.
(b) Show that the converse is not true.
(c) Show that the condition in (a) implies that for a.e. $x \in D$ we have $f_{n}(x)=$ $f(x)$ for infinitely many $n \in \mathbb{N}$.

Solution

(a) Given any $\varepsilon>0$, for every $n \in \mathbb{N}$, let

$$
E_{n}=\left\{x \in D:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\} ; \quad F_{n}=\left\{x \in D:\left|f_{n}(x)-f(x)\right|>0\right\} .
$$

Then we have for all $n \in \mathbb{N}$

$$
\begin{aligned}
x \in E_{n} & \Rightarrow\left|f_{n}(x)-f(x)\right|>\varepsilon \\
& \Rightarrow\left|f_{n}(x)-f(x)\right|>0 \\
& \Rightarrow x \in F_{n} .
\end{aligned}
$$

Consequently, $E_{n} \subset F_{n}$ and $\mu\left(E_{n}\right) \leq \mu\left(F_{n}\right)$ for all $n \in \mathbb{N}$. By hypothesis, we have that $\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=0$. This implies that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$. Thus, $f_{n} \xrightarrow{\mu} f$.
(b) The converse of (a) is false.

Consider functions:

$$
\begin{aligned}
& f_{n}(x)=\frac{1}{n}, \quad x \in[0,1] \quad n \in \mathbb{N} . \\
& f(x)=0, \quad x \in[0,1] .
\end{aligned}
$$

Then $f_{n} \rightarrow f$ (pointwise) on $[0,1]$. By Lebesgue Theorem $f_{n} \xrightarrow{\mu} f$ on $[0,1]$. But for every $n \in \mathbb{N}$

$$
\left|f_{n}(x)-f(x)\right|=\frac{1}{n}>0, \quad \forall x \in[0,1] .
$$

In other words,

$$
\left\{x \in D:\left|f_{n}(x)-f(x)\right|>0\right\}=[0,1] .
$$

Thus,

$$
\lim _{n \rightarrow \infty} \mu\left\{x \in D:\left|f_{n}(x)-f(x)\right|>0\right\}=1 \neq 0
$$

(c) Recall that (Problem 11a)

$$
\begin{equation*}
\mu\left(\liminf _{n \rightarrow \infty} E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right) \tag{*}
\end{equation*}
$$

www.MATHVN.com - Anh Quang Le, PhD

Let $E_{n}=\left\{x \in D: f_{n}(x) \neq f(x)\right\}$ and $E=\liminf _{n \rightarrow \infty} E_{n}$. By (a),

$$
\liminf _{n \rightarrow \infty} \mu\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0
$$

Therefore, by $(*), \mu(E)=0$. By definition, we have

$$
E=\bigcup_{n \in \mathbb{N} k \geq n} \bigcap_{k} E_{k}
$$

Hence, $x \notin E$ whenever $x \in E_{n}^{c}$ for infinitely many n 's, that is $f_{n}(x)=f(x)$ a.e. in D for infinitely many n 's.

Problem 42
Suppose $f_{n}(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $x \in D \backslash Z$ with $\mu(Z)=0$. If $f_{n} \xrightarrow{\mu} f$ on D, then prove that $f_{n} \rightarrow f$ a.e. on D.

Solution

Let $B=D \backslash Z$. Since $f_{n} \xrightarrow{\mu} f$ on $D, f_{n} \xrightarrow{\mu} f$ on B. Then, By Riesz theorem, there exists a sub-sequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $f_{n_{k}} \rightarrow f$ a.e. on B.
Let $C=\left\{x \in B: f_{n_{k}} \nrightarrow f\right\}$. Then $\mu(C)=0$ and $f_{n_{k}} \rightarrow f$ on $B \backslash C$.
From $f_{n}(x) \leq f_{n+1}(x)$ for all $n \in \mathbb{N}$, and since $n_{k} \geq k$, we get $f_{k} \leq f_{n_{k}}$ for all $k \in \mathbb{N}$. Therefore

$$
\left|f_{k}-f\right| \leq\left|f_{n_{k}}-f\right|
$$

This implies that $f_{k} \rightarrow f$ on $B \backslash C$. Since $B \backslash C=D \backslash(Z \cup C)$ and $\mu(Z \cup C)=0$, it follows that $f_{n} \rightarrow f$ a.e. on D

Problem 43
Show that if $f_{n} \xrightarrow{\mu} f$ on D and $g_{n} \xrightarrow{\mu} g$ on D then $f_{n}+g_{n} \xrightarrow{\mu} f+g$ on D.

Solution

Since $f_{n} \xrightarrow{\mu} f$ and $g_{n} \xrightarrow{\mu} g$ on D, for every $\varepsilon>0$,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mu\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2}\right\}=0 \tag{4.1}\\
& \lim _{n \rightarrow \infty} \mu\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2}\right\}=0 \tag{4.2}
\end{align*}
$$

Now

$$
\left|\left(f_{n}+g_{n}\right)-(f+g)\right| \leq\left|f_{n}-f\right|+\left|g_{n}-g\right| .
$$

www.MATHVN.com - Anh Quang Le, PhD

50 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

By the triangle inequality above, if $\left|\left(f_{n}+g_{n}\right)-(f+g)\right| \geq \varepsilon$ is true, then at least one of the two following inequalities must be true:

$$
\left|f_{n}-f\right| \geq \frac{\varepsilon}{2} \quad \text { or } \quad\left|g_{n}-g\right| \geq \frac{\varepsilon}{2} .
$$

Hence

$$
\left\{D:\left|\left(f_{n}+g_{n}\right)-(f+g)\right| \geq \varepsilon\right\} \subset\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2}\right\} \cup\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2}\right\}
$$

Therefore,

$$
\mu\left\{D:\left|\left(f_{n}+g_{n}\right)-(f+g)\right| \geq \varepsilon\right\} \leq \mu\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2}\right\}+\mu\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2}\right\}
$$

From (4.1) and (4.2) we obtain

$$
\lim _{n \rightarrow \infty} \mu\left\{D:\left|\left(f_{n}+g_{n}\right)-(f+g)\right| \geq \varepsilon\right\}=0
$$

That is, by definition, $f_{n}+g_{n} \xrightarrow{\mu} f+g$ on D.

Problem 44

Show that if $f_{n} \xrightarrow{\mu} f$ on D and $g_{n} \xrightarrow{\mu} g$ on D and $\mu(D)<\infty$, then $f_{n} g_{n} \xrightarrow{\mu} f g$ on D.
(Assume that both f_{n} and g_{n} are real-valued for every $n \in \mathbb{N}$ so that the multiplication $f_{n} g_{n}$ is possible.)

Solution

For every $\varepsilon>0$ and $\delta>0$, we want $\mu\left\{\left|f_{n} g_{n}-f g\right| \geq \varepsilon\right\}<\delta$ for n large enough. Notice that

$$
(*) \quad\left|f_{n} g_{n}-f g\right| \leq\left|f_{n} g_{n}-f g_{n}\right|+\left|f g_{n}-f g\right| \leq\left|f_{n}-f\right|\left|g_{n}\right|+|f|\left|g_{n}-g\right| .
$$

For any $N \in \mathbb{N}$, let

$$
E_{N}=\{D:|f|>N\} \cup\{D:|g|>N\} .
$$

It is clear that $E_{N} \supset E_{N+1}$ for every $N \in \mathbb{N}$. Since $\mu(D)<\infty$, we have

$$
\lim _{N \rightarrow \infty} \mu\left(E_{N}\right)=\mu\left(\bigcap_{N \in \mathbb{N}} E_{N}\right)=\mu(\varnothing)=0
$$

www.MATHVN.com - Anh Quang Le, PhD

It follows that, we can take N large enough to get, for every $\delta>0$,

$$
(* *) \quad \frac{\varepsilon}{2 N}<1 \text { and } \mu\left(E_{N}\right)<\frac{\delta}{3} .
$$

Observe that

$$
\left\{D:\left|g_{n}\right|>N+1\right\} \subset\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2 N}\right\} \cup E_{N}
$$

(since $\left|g_{n}\right| \leq\left|g_{n}-g\right|+|g|$). Now if we have

$$
\left|f_{n}-f\right| \geq \frac{\varepsilon}{2(N+1)} ;\left|g_{n}\right|>N+1 ;\left|g_{n}-g\right| \geq \frac{\varepsilon}{2 N}, \quad \text { and } \quad|f|>N
$$

then $\left({ }^{*}\right)$ implies

$$
\begin{aligned}
\left\{D:\left|f_{n} g_{n}-f g\right| \geq \varepsilon\right\} & \subset\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2(N+1)}\right\} \cup E_{N} \\
& \cup\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2 N}\right\} \cup\left\{D:\left|g_{n}\right|>N+1\right\}
\end{aligned}
$$

By assumption, given $\varepsilon>0, \delta>0$, for $n>N$, we have

$$
\begin{aligned}
& \mu\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2(N+1)}\right\}<\frac{\delta}{3} \\
& \mu\left\{D:\left|g_{n}-g\right| \geq \frac{\varepsilon}{2 N}\right\}<\frac{\delta}{3}
\end{aligned}
$$

From these results, from $\left({ }^{*}\right)$, and $\left({ }^{* *}\right)$ we get

$$
\mu\left\{D:\left|f_{n} g_{n}-f g\right| \geq \varepsilon\right\}<\frac{\delta}{3}+\frac{\delta}{3}+\frac{\delta}{3}=\delta .
$$

Problem 45

(a) Definition of "Almost uniform convergence" (a.u).
(b) Show that if $f_{n} \rightarrow f$ a.u on D then $f_{n} \xrightarrow{\mu} f$ on D.
(c) Show that if $f_{n} \rightarrow f$ a.u on D then $f_{n} \rightarrow f$ a.e. on D.

Solution

(a) $\forall \varepsilon>0, \exists E \subset D$ such that $\mu(E)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on $D \backslash E$.
(b) Suppose that $f_{n} \rightarrow f$ a.u on D and f_{n} does not converges to f in measure on D. Then there exists an $\varepsilon_{0}>0$ such that

$$
\mu\left\{x \in D:\left|f_{n}(x)-f(x)\right|>\varepsilon_{0}\right\} \nrightarrow 0 \text { as } n \rightarrow \infty
$$

www.MATHVN.com - Anh Quang Le, PhD

52 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

We can choose $n_{1}<n_{2}<\ldots$ such that

$$
\mu\left\{x \in D:\left|f_{n_{k}}(x)-f(x)\right|>\varepsilon_{0}\right\} \geq r \text { for some } r>0 \text { and } \forall k \in \mathbb{N} .
$$

Now since $f_{n} \rightarrow f$ a.u on D,

$$
\exists E \subset D \text { such that } \mu(E)<\frac{r}{2} \text { and } f_{n} \rightarrow f \text { uniformly on } D \backslash E .
$$

Let $C=\left\{x \in D:\left|f_{n_{k}}(x)-f(x)\right|>\varepsilon_{0}\right\} \quad \forall k \in \mathbb{N}$. Then $\mu(C) \geq r$. Since $f_{n} \rightarrow f$ uniformly on $D \backslash E$,

$$
\exists N: n \geq N \Rightarrow\left|f_{n}(x)-f(x)\right| \leq \varepsilon_{0}, \forall x \in D \backslash E
$$

Thus,

$$
C \subset(D \backslash E)^{c}=E .
$$

Hence,

$$
0<r \leq \mu(C) \leq \mu(E)<\frac{r}{2}
$$

This is a contradiction.
(c) Since $f_{n} \rightarrow f$ a.u. on D, for every $n \in \mathbb{N}$, there exists $E_{n} \subset D$ such that $\mu\left(E_{n}\right)<\frac{1}{n}$ and $f_{n} \rightarrow f$ uniformly on $D \backslash E_{n}$. Let $E=\bigcap_{n \in \mathbb{N}} E_{n}$, then $\mu(E)=0$. Since $f_{n} \rightarrow f$ on $D \backslash E_{n}$ for every $n \in \mathbb{N}, \quad f_{n} \rightarrow f$ on

$$
\bigcup_{n \in \mathbb{N}}\left(D \backslash E_{n}\right)=D \backslash \bigcap_{n \in \mathbb{N}} E_{n}=D \backslash E .
$$

Since $\mu(E)=0, \quad f_{n} \rightarrow f$ a.e. on D

Chapter 5

Integration of Bounded Functions on Sets of Finite Measure

In this chapter we suppose $\mu(D)<\infty$.

1. Integration of simple functions

Definition 17 (Lebesgue integral of simple functions)
Let φ be a simple function on D and $\varphi=\sum_{i=1}^{n} a_{i} \chi_{D_{i}}$ be its canonical representation. The Lebesgue integral of φ on D is defined by

$$
\int_{D} \varphi(x) \mu(d x)=\sum_{i=1}^{n} a_{i} \mu\left(D_{i}\right)
$$

We usually use simple notations for the integral of φ :

$$
\int_{D} \varphi d \mu, \int_{D} \varphi(x) d x \text { or } \int_{D} \varphi .
$$

If $\int_{D} \varphi d \mu<\infty$, then we say that φ is integrable on D.

Proposition 15 (properties of integral of simple functions)

1. $\mu(D)=0 \Rightarrow \int_{D} \varphi d \mu=0$.
2. $\varphi \geq 0, E \subset D \Rightarrow \int_{E} \varphi d \mu \leq \int_{D} \varphi d \mu$.
3. $\int_{D} c \varphi d \mu=c \int_{D} \varphi d \mu$.
4. $\int_{D} \varphi d \mu=\sum_{i=1}^{n} \int_{D_{i}} \varphi d \mu$.
5. $\int_{D} c \varphi d \mu=c \int_{D} \varphi d \mu$ (c is a constant).
6. $\int_{D}\left(\varphi_{1}+\varphi_{2}\right) d \mu=\int_{D} \varphi_{1} d \mu+\int_{D} \varphi_{2} d \mu$.
7. $\varphi_{1}=\varphi_{2}$ a.e. on $D \Rightarrow \int_{D} \varphi_{1} d \mu=\int_{D} \varphi_{2} d \mu$.

www.MATHVN.com - Anh Quang Le, PhD

54CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

2. Integration of bounded functions

Definition 18 (Lebesgue integral of bounded functions)
Let f be a bounded real-valued measurable function on D. Let Φ be the collection of all simple functions on D. We define the Lebesgue integral of f on D by

$$
\int_{D} f d \mu=\inf _{\psi \geq f} \int_{D} \psi d \mu=\sup _{\varphi \leq f} \int_{D} \varphi d \mu \text { where } \varphi, \psi \in \Phi
$$

If $\int_{D} f d \mu<\infty$, then we say that f is integrable on D.

Proposition 16 (properties of integral of bounded functions)

1. $\int_{D} c f d \mu=c \int_{D} f d \mu$.
2. $\int_{D}(f+g) d \mu=\int_{D} f d \mu+\int_{D} g d \mu$.
3. $f=g$ a.e. on $D \Rightarrow \int_{D} f d \mu=\int_{D} g d \mu$.
4. $f \leq g$ on $D \Rightarrow \int_{D} f d \mu \leq \int_{D} g d \mu$.
5. $|f| \leq M$ on $D \Rightarrow\left|\int_{D} f d \mu\right| \leq \int_{D}|f| d \mu \leq M \mu(D)$.
6. $f \geq 0$ a.e. on D and $\int_{D} f d \mu=0 \Rightarrow f=0$ a.e. on D.
7. If $\left(D_{n}\right)$ be a disjoint sequence of measurable subset $D_{n} \subset D$ with $\bigcup_{n \in \mathbb{N}} D_{n}=D$ then

$$
\int_{D} f d=\mu \sum_{n \in \mathbb{N}} \int_{D_{n}} f d \mu
$$

Theorem 5 (Bounded convergence theorem)
Suppose that $\left(f_{n}\right)$ is a uniformly bounded sequence of real-valued measurable functions on D, and f is a bounded real-valued measurable function on D. If $f_{n} \rightarrow f$ a.e. on D, then

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

In particular,

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 46

Let f be an extended real-valued measurable function on a measurable set D. For $M_{1}, M_{2} \in \mathbb{R}, M_{1}<M_{2}$, let the truncation of f at M_{1} and M_{2} be defined by

$$
g(x)= \begin{cases}M_{1} & \text { if } f(x)<M_{1} \\ f(x) & \text { if } M_{1} \leq f(x) \leq M_{2} \\ M_{2} & \text { if } f(x)>M_{2}\end{cases}
$$

Show that g is measurable on D.

Solution

Let $a \in \mathbb{R}$. We need to show that the set $E=\{x \in D: g(x)>a\}$ is measurable. There are three cases to consider:

1. If $a \geq M_{2}$ then $E=\varnothing$ which is measurable.
2. If $a<M_{1}$ then $E=D$ which is measurable.
3. If $M_{1} \leq a<M_{2}$ then $E=\{x \in D: f(x)>a\}$ which is measurable.

Thus, in all three cases E is measurable, so g is measurable.

Problem 47

Given a measure space (X, \mathcal{A}, μ). Let f be a bounded real-valued \mathcal{A}-measurable function on $D \in \mathcal{A}$ with $\mu(D)<\infty$. Suppose $|f(x)| \leq M, \forall x \in D$ for some constant $M>0$.
(a) Show that if $\int_{D} f d \mu=M \mu(D)$, then $f=M$ a.e. on D.
(b) Show that if $f<M$ a.e. on D and if $\mu(D)>0$, then $\int_{D} f d \mu<M \mu(D)$.

Solution

(a) For every $n \in \mathbb{N}$, let $E_{n}=\left\{x \in D: f(x)<M-\frac{1}{n}\right\}$. Then, since $f \leq M$ on $D \backslash E_{n}$, we have

$$
\begin{aligned}
\int_{D} f d \mu & =\int_{E_{n}} f d \mu+\int_{D \backslash E_{n}} f d \mu \\
& \leq\left(M-\frac{1}{n}\right) \mu\left(E_{n}\right)+M \mu\left(D \backslash E_{n}\right) .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

56CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

Since $E_{n} \subset D$, we have

$$
\mu\left(D \backslash E_{n}\right)=\mu(D)-\mu\left(E_{n}\right)
$$

Therefore,

$$
\begin{aligned}
\int_{D} f d \mu & \leq\left(M-\frac{1}{n}\right) \mu\left(E_{n}\right)+M \mu(D)-M \mu\left(E_{n}\right) \\
& =M \mu(D)-\frac{1}{n} \mu\left(E_{n}\right)
\end{aligned}
$$

By assumption $\int_{D} f d \mu=M \mu(D)$, it follows that

$$
0 \leq-\frac{1}{n} \mu\left(E_{n}\right) \leq 0, \forall n \in \mathbb{N}
$$

which implies $\mu\left(E_{n}\right)=0, \forall n \in \mathbb{N}$.
Now let $E=\bigcup_{n=1}^{\infty} E_{n}$ then $E=\{x \in D: f(x)<M\}$. We want to show that $\mu(E)=0$. We have

$$
0 \leq \mu(E) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)=0
$$

Thus, $\mu(E)=0$. Since $|f| \leq M$, the last result implies $f=M$ a.e. on D.
(b) First we note that $|f| \leq M$ on D implies that $\int_{D} f d \mu \leq M \mu(D)$. Assume that $\int_{D} f d \mu=M \mu(D)$. By part (a) we have $f=M$ a.e. on D. This contradicts the fact that $f<M$ a.e. on D. Thus $\int_{D} f d \mu<M \mu(D)$.

Problem 48

Consider a sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ defined on $[0,1]$ by

$$
f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} \quad \text { for } \quad x \in[0,1] .
$$

(a) Show that $\left(f_{n}\right)$ is uniformly bounded on $[0,1]$ and evaluate

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{n x}{1+n^{2} x^{2}} d \mu
$$

(b) Show that $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$.

Solution

(a) For all $n \in \mathbb{N}$, for all $x \in[0,1]$, we have $1+n^{2} x^{2} \geq 2 n x \geq 0$ and $1+n^{2} x^{2}>0$, hence

$$
0 \leq f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} \leq \frac{1}{2}
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus, $\left(f_{n}\right)$ is uniformly bounded on $[0,1]$.
Since each f_{n} is continuous on $[0,1], f$ is Riemann integrable on $[0,1]$. In this case, Lebesgue integral and Riemann integral on $[0,1]$ coincide:

$$
\begin{aligned}
\int_{[0,1]} \frac{n x}{1+n^{2} x^{2}} d \mu & =\int_{0}^{1} \frac{n x}{1+n^{2} x^{2}} d x \\
& =\frac{1}{2 n} \int_{1}^{1+n^{2}} \frac{1}{t} d t \quad\left(\text { with } t=1+n^{2} x^{2}\right) \\
& =\frac{1}{2 n} \ln \left(1+n^{2}\right)=\frac{\ln \left(1+n^{2}\right)}{2 n}
\end{aligned}
$$

Using L'Hospital rule we get $\lim _{x \rightarrow \infty} \frac{\ln \left(1+x^{2}\right)}{2 x}=0$. Hence,

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{n x}{1+n^{2} x^{2}} d \mu=0
$$

(b) For each $x \in[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{n x}{1+n^{2} x^{2}}=0
$$

Hence, $f_{n} \rightarrow f \equiv 0$ pointwise on $[0,1]$. To show f_{n} does not converge to $f \equiv 0$ uniformly on $[0,1]$, we find a sequence $\left(x_{n}\right)$ in $[0,1]$ such that $x_{n} \rightarrow 0$ and $f_{n}\left(x_{n}\right) \leftrightarrow$ $f(0)=0$ as $n \rightarrow \infty$. Indeed, take $x_{n}=\frac{1}{n}$. Then $f_{n}(x)=\frac{1}{2}$. Thus,

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=\frac{1}{2} \neq f(0)=0
$$

Problem 49

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f be extended real-valued measurable functions on $D \in \mathcal{M}_{L}$ with $\mu(D)<\infty$ and assume that f is real-valued a.e. on D. Show that $f_{n} \xrightarrow{\mu} f$ on D if and only if

$$
\lim _{n \rightarrow \infty} \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0
$$

Solution

- Suppose $f_{n} \xrightarrow{\mu} f$ on D. By definition of convergence in measure, for any $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\exists E_{n} \subset D: \mu\left(E_{n}\right)<\frac{\varepsilon}{2} \text { and }\left|f_{n}-f\right|<\frac{\varepsilon}{2 \mu(D)} \text { on } D \backslash E_{n} .
$$

www.MATHVN.com - Anh Quang Le, PhD

58CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

For $n \geq N$ we have

$$
\text { (*) } \quad \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{D \backslash E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu .
$$

Note that for all $n \in \mathbb{N}$, we have $0 \leq \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \leq 1$ on E_{n} and

$$
0 \leq \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}=\left|f_{n}-f\right| \frac{1}{1+\left|f_{n}-f\right|} \leq\left|f_{n}-f\right| \leq \frac{\varepsilon}{2 \mu(D)} \quad \text { on } \quad D \backslash E_{n}
$$

So for $n \geq N$, we can write $\left(^{*}\right)$ as

$$
\begin{aligned}
0 \leq \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu & \leq \int_{E_{n}} 1 d \mu+\int_{D \backslash E_{n}} \frac{\varepsilon}{2 \mu(D)} d \mu \\
& =\mu\left(E_{n}\right)+\frac{\varepsilon}{2 \mu(D)} \mu\left(D \backslash E_{n}\right) \\
& \leq \mu\left(E_{n}\right)+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \mu(d x)=0$.

- Conversely, suppose $\lim _{n \rightarrow \infty} \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$. We show $f_{n} \xrightarrow{\mu} f$ on D. For any $\varepsilon>0$, for $n \in \mathbb{N}$, let $E_{n}=\left\{x \in D:\left|f_{n}-f\right| \geq \varepsilon\right\}$. We have

$$
\left|f_{n}-f\right| \geq \varepsilon \Rightarrow \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \geq \frac{\varepsilon}{1+\varepsilon}
$$

(since the function $\varphi(x)=\frac{x}{1+x}, x>0$ is increasing).
It follows that

$$
0 \leq \int_{E_{n}} \frac{\varepsilon}{1+\varepsilon} d \mu \leq \int_{E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu .
$$

Hence,

$$
0 \leq \frac{\varepsilon}{1+\varepsilon} \mu\left(E_{n}\right) \leq \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu
$$

Since $\lim _{n \rightarrow \infty} \int_{D} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0, \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$. Thus, $f_{n} \xrightarrow{\mu} f$ on D.

Problem 50

Let (X, \mathcal{A}, μ) be a finite measure space. Let Φ be the set of all extended realvalued \mathcal{A}-measurable function on X where we identify functions that are equal a.e. on X. Let

$$
\rho(f, g)=\int_{X} \frac{|f-g|}{1+|f-g|} d \mu \text { for } f, g \in \Phi
$$

www.MATHVN.com - Anh Quang Le, PhD

(a) Show that ρ is a metric on Φ.
(b) Show that Φ is complete w.r.t. the metric ρ.

Solution

(a) Note that $\mu(X)$ is finite and $0 \leq \frac{|f-g|}{1+|f-g|}<1$, so $0 \leq \rho<\infty$.

- $\rho(f, g)=0 \Leftrightarrow \int_{X} \frac{|f-g|}{1+|f-g|} d \mu=0 \Leftrightarrow f-g=0 \Leftrightarrow f=g$. (We identify functions that are equal a.e. on X.)
- It is clear that $\rho(f, g)=\rho(g, f)$.
- We make use the fact that the function $\varphi(x)=\frac{x}{1+x}, x>0$ is increasing. For $f, g, h \in \Phi$,

$$
\begin{aligned}
\frac{|f-h|}{1+|f-h|} & \leq \frac{|f-g|+|g-h|}{1+|f-g|+|g-h|} \\
& =\frac{|f-g|}{1+|f-g|+|g-h|}+\frac{|g-h|}{1+|f-g|+|g-h|} \\
& \leq \frac{|f-g|}{1+|f-g|}+\frac{|g-h|}{1+|g-h|} .
\end{aligned}
$$

Integrating over X we get

$$
\int_{X} \frac{|f-h|}{1+|f-h|} d \mu \leq \int_{X} \frac{|f-g|}{1+|f-g|} d \mu+\int_{X} \frac{|g-h|}{1+|g-h|} d \mu
$$

That is

$$
\rho(f, g) \leq \rho(f, h)+\rho(h, g)
$$

Thus, ρ is a metric on Φ.
(b) Let $\left(f_{n}\right)$ be a Cauchy sequence in Φ. We show that there exists an $f \in \Phi$ such that $\rho\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$.
First we claim that $\left(f_{n}\right)$ is a Cauchy sequence w.r.t. convergence in measure. Let $\eta>0$. For $n, m \in \mathbb{N}$, define $A_{m, n}=\left\{X:\left|f_{n}-f_{m}\right| \geq \eta\right\}$. For every $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that

$$
\text { (*) } \quad n, m \geq N \Rightarrow \rho\left(f_{n}, f_{m}\right)<\varepsilon \frac{\eta}{1+\eta} .
$$

www.MATHVN.com - Anh Quang Le, PhD

60CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

While we have that

$$
\begin{aligned}
\rho\left(f_{n}, f_{m}\right)=\int_{X} \frac{\left|f_{n}-f_{m}\right|}{1+\left|f_{n}-f_{m}\right|} d \mu & \geq \int_{A_{m, n}} \frac{\left|f_{n}-f_{m}\right|}{1+\left|f_{n}-f_{m}\right|} d \mu \\
& \geq \frac{\eta}{1+\eta} \mu\left(A_{m, n}\right) .
\end{aligned}
$$

For $n, m \geq N$, from $(*)$ we get

$$
\varepsilon \frac{\eta}{1+\eta}>\frac{\eta}{1+\eta} \mu\left(A_{m, n}\right) .
$$

This implies that $\mu\left(A_{m, n}\right)<\varepsilon$. Thus, $\left(f_{n}\right)$ is Cauchy in measure. We know that if $\left(f_{n}\right)$ is Cauchy in measure then $\left(f_{n}\right)$ converges in measure to some $f \in \Phi$.
Next we prove that $\rho\left(f_{n}, f\right) \rightarrow 0$. Since $f_{n} \xrightarrow{\mu} f$, for any $\varepsilon>0$ there exists $E \in \mathcal{A}$ and an $N \in \mathbb{N}$ such that

$$
\mu(E)<\frac{\varepsilon}{2} \text { and }\left|f_{n}-f\right|<\frac{\varepsilon}{2 \mu(X)} \text { on } X \backslash E \text { whenever } n \geq N
$$

On $X \backslash E$, for $n \geq N$, we have

$$
\int_{X \backslash E} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{X \backslash E}\left|f_{n}-f\right| d \mu<\frac{\varepsilon}{2 \mu(X)} \mu(X \backslash E) \leq \frac{\varepsilon}{2}
$$

On E, for all n, we have

$$
\int_{E} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{E} 1 d \mu=\mu(E)<\frac{\varepsilon}{2}
$$

Hence, for $n \geq N$, we have

$$
\rho\left(f_{n}, f\right)=\int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{E} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{X \backslash E} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\varepsilon .
$$

Thus, $\left(f_{n}\right)$ converges to $f \in \Phi$. And hence, (Φ, ρ) is complete

Problem 51(Bounded convergence theorem under convergence in measure) Suppose that $\left(f_{n}\right)$ is a uniformly bounded sequence of real-valued measurable functions on D, and f is a bounded real-valued measurable function on D. If $f_{n} \xrightarrow{w} f$ on D, then

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

We will use this fact:
Let $\left(a_{n}\right)$ be a sequence of real numbers. If there exists a real number a such that every subsequence $\left(a_{n_{k}}\right)$ has a subsequence $\left(a_{n_{k_{l}}}\right)$ converging to a, then the sequence $\left(a_{n}\right)$ converges to a.
Consider the sequence of real numbers

$$
a_{n}=\int_{D}\left|f_{n}-f\right| d \mu, n \in \mathbb{N} .
$$

Take an arbitrary subsequence $\left(a_{n_{k}}\right)$. Consider the sequence $\left(f_{n_{k}}\right)$. Since $\left(f_{n}\right)$ converges to f in measure on D, the subsequence $\left(f_{n_{k}}\right)$ converges to f in measure on D too. By Riesz theorem, there exists a subsequence $\left(f_{n_{k_{l}}}\right)$ converging to f a.e. on D. Thus by the bounded convergence theorem, we have

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n_{k_{l}}}-f\right| d \mu=0
$$

That is, the subsequence ($a_{n_{k_{l}}}$) of the arbitrary subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ converges to 0 . Therefore the sequence $\left(a_{n}\right)$ converges to 0 . Thus

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

www.MATHVN.com - Anh Quang Le, PhD
62CHAPTER 5. INTEGRATION OF BOUNDED FUNCTIONS ON SETS OF FINITE MEASURE

www.MATHVN.com - Anh Quang Le, PhD

Chapter 6

Integration of Nonnegative Functions

Definition 19 Let f be a nonnegative extended real-valued measurable function on a measurable $D \subset \mathbb{R}$. We define the Lebesgue integral of f on D by

$$
\int_{D} f d \mu=\sup _{0 \leq \varphi \leq f} \varphi d \mu
$$

where the supremum is on the collection of all nonnegative simple function φ on D. If the integral is finite, we say that f is integrable on D.

Proposition 17 (Properties)
Let f, f_{1} and f_{2} be nonnegative extended real-valued measurable functions on D. Then

1. $\int_{D} f d \mu<\infty \Rightarrow f<\infty$ a.e. on D.
2. $\int_{D} f d \mu=0 \Rightarrow f=0$ a.e. on D.
3. $D_{0} \subset D \Rightarrow \int_{D_{0}} f d \mu \leq \int_{D} f d \mu$.
4. $f>0$ a.e. on D and $\int_{D} f d \mu=0 \Rightarrow \mu(D)=0$.
5. $f_{1} \leq f_{2}$ on $D \Rightarrow \int_{D} f_{1} d \mu \leq \int_{D} f_{2} d \mu$.
6. $f_{1}=f_{2}$ a.e. on $D \Rightarrow \int_{D} f_{1} d \mu \leq \int_{D} f_{2} d \mu$.

Theorem 6 (Monotone convergence theorem)
Let $\left(f_{n}\right)$ be an increasing sequence of nonnegative extended real-valued measurable functions on D. If $f_{n} \rightarrow f$ on $\overline{D \text { then }}$

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu
$$

Remark: The conclusion is not true for a decreasing sequence.

www.MATHVN.com - Anh Quang Le, PhD

Proposition 18 Let $\left(f_{n}\right)$ be an increasing sequence of nonnegative extended real-valued measurable functions on D. Then we have

$$
\int_{D}\left(\sum_{n \in \mathbb{N}} f_{n}\right) d \mu=\sum_{n \in \mathbb{N}} \int_{D} f_{n} d \mu
$$

Theorem 7 (Fatou's Lemma)
Let $\left(f_{n}\right)$ be a sequence of nonnegative extended real-valued measurable functions on D. Then we have

$$
\int_{D} \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int_{D} f_{n} d \mu
$$

In particular, if $\lim _{n \rightarrow \infty} f_{n}=f$ exists a.e. on D, then

$$
\int_{D} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{D} f_{n} d \mu
$$

Proposition 19 (Uniform absolute continuity of the integral)
Let f be an integrable nonnegative extended real-valued measurable functions on D. Then for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
\int_{E} f d \mu<\varepsilon
$$

for every measurable $E \subset D$ with $\mu(E)<\delta$.

Problem 52

Let f_{1} and f_{2} be nonnegative extended real-valued measurable functions on a measurable set $D \subset \mathbb{R}$. Suppose $f_{1} \leq f_{2}$ and f_{1} is integrable on D. Prove that $f_{2}-f_{1}$ is defined a.e. on D and

$$
\int_{D}\left(f_{2}-f_{1}\right) d \mu=\int_{D} f_{2} d \mu-\int_{D} f_{1} d \mu
$$

Solution

Since f_{1} is integrable on D, f_{1} is real-valued a.e. on D. Thus there exists a null set $N \subset D$ such that $0 \leq f_{1}(x)<\infty, \forall x \in D \backslash N$. Then $f_{2}-f_{1}$ is defined on $D \backslash N$. That is $f_{2}-f_{1}$ is defined a.e. on D. On the other hand, since $f_{2}=f_{1}+\left(f_{2}-f_{1}\right)$, we have

$$
\int_{D} f_{2} d \mu=\int_{D}\left[f_{1}+\left(f_{2}-f_{1}\right)\right] d \mu=\int_{D} f_{1} d \mu+\int_{D}\left(f_{2}-f_{1}\right) d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $\int_{D} f_{1} d \mu<\infty$, we have

$$
\int_{D}\left(f_{2}-f_{1}\right) d \mu=\int_{D} f_{2} d \mu-\int_{D} f_{1} d \mu
$$

Remark: If $\int_{D} f_{1} d \mu=\infty, \int_{D} f_{2} d \mu-\int_{D} f_{1} d \mu$ may have the form $\infty-\infty$.

Problem 53

Let f be a non-negative real-valued measurable function on a measure space (X, \mathcal{A}, μ). Suppose that $\int_{E} f d \mu=0$ for every $E \in \mathcal{A}$. Show that $f=0$ a.e.

Solution

Since $f \geq 0, \quad A=\{x \in X: f(x)>0\}=\{x \in X: f(x) \neq 0\}$. We shall show that $\mu(A)=0$.
Let $A_{n}=\left\{x \in X: f(x) \geq \frac{1}{n}\right\}$ for every $n \in \mathbb{N}$. Then $A=\bigcup_{n \in \mathbb{N}} A_{n}$. Now on A_{n} we have

$$
\begin{aligned}
f \geq \frac{1}{n} & \Rightarrow \int_{A_{n}} f d \mu \geq \frac{1}{n} \mu\left(A_{n}\right) \\
& \Rightarrow \mu\left(A_{n}\right) \leq n \int_{A_{n}} f d \mu=0 \quad \text { (by assumption) } \\
& \Rightarrow \mu\left(A_{n}\right)=0 \text { for every } n \in \mathbb{N} .
\end{aligned}
$$

Thus, $0 \leq \mu(A) \leq \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)=0$. Hence, $\mu(A)=0$. This tells us that $f=0$ a.e.

Problem 54

Let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of non-negative real-valued measurable functions on \mathbb{R} such that $f_{n} \rightarrow f$ a.e. on \mathbb{R}.
Suppose $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\int_{\mathbb{R}} f d \mu<\infty$. Show that for each measurable set $E \subset \mathbb{R}$ we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Solution

www.MATHVN.com - Anh Quang Le, PhD

66

Since $g_{n}=f_{n}-f_{n} \chi_{E} \geq 0, n \in \mathbb{N}$ and $f_{n} \rightarrow f$ a.e., we have, by Fatou's lemma,

$$
\begin{aligned}
\int_{\mathbb{R}} \lim _{n \rightarrow \infty} g_{n} d \mu & \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}} g_{n} d \mu \\
\int_{\mathbb{R}}\left(f-f \chi_{E}\right) d \mu & \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}}\left(f_{n}-f_{n} \chi_{E}\right) d \mu \\
\int_{\mathbb{R}} f d \mu-\int_{E} f d \mu & \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu-\limsup _{n \rightarrow \infty} \int_{E} f_{n} d \mu
\end{aligned}
$$

From the last inequation and assumption we get

$$
\begin{equation*}
\int_{E} f d \mu \geq \limsup _{n \rightarrow \infty} \int_{E} f_{n} d \mu \tag{6.1}
\end{equation*}
$$

Let $h_{n}=f_{n}-f_{n} \chi_{E} \geq 0$. Using the similar calculation, we obtain

$$
\begin{equation*}
\int_{E} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d \mu \tag{6.2}
\end{equation*}
$$

From (6.1) and (6.2) we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Problem 55

Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}\right)$ and f be extended real-valued \mathcal{A} measurable functions on $D \in \mathcal{A}$ and assume that f is real-valued a.e. on D. Suppose there exists a sequence of positive numbers $\left(\varepsilon_{n}\right)$ such that

1. $\sum_{n \in \mathbb{N}} \varepsilon_{n}<\infty$.
2. $\int_{D}\left|f_{n}-f\right|^{p} d \mu<\varepsilon_{n}$ for every $n \in \mathbb{N}$ for some fixed $p \in(0, \infty)$.

Show that the sequence $\left(f_{n}\right)$ converges to f a.e. on D. (Note that no integrability of $f_{n}, f,|f|^{p}$ on D is assumed).

Solution

Since $\left|f_{n}-f\right|^{p}$ is non-negative measurable for every $n \in \mathbb{N}$, the sequence $\left(\sum_{n=1}^{N}\left|f_{n}-f\right|^{p}\right)_{N \in \mathbb{N}}$ is an increasing sequence of non-negative measurable functions. By the Monotone Convergence Theorem, we have

$$
\int_{D} \lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N}\left|f_{n}-f\right|^{p}\right) d \mu=\lim _{N \rightarrow \infty} \int_{D} \sum_{n=1}^{N}\left|f_{n}-f\right|^{p} d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

Using assumptions we get

$$
\begin{aligned}
\int_{D} \sum_{n=1}^{\infty}\left|f_{n}-f\right|^{p} d \mu & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{D}\left|f_{n}-f\right|^{p} d \mu \\
& =\sum_{n=1}^{\infty} \int_{D}\left|f_{n}-f\right|^{p} d \mu \\
& \leq \sum_{n=1}^{\infty} \varepsilon_{n}<\infty
\end{aligned}
$$

This means that the function under the integral symbol in the left hand side is finite a.e. on D. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|f_{n}-f\right|^{p}<\infty \text { a.e. on } D & \Rightarrow \lim _{n \rightarrow \infty}\left|f_{n}-f\right|^{p}=0 \text { a.e. on } D \\
& \Rightarrow \lim _{n \rightarrow \infty}\left|f_{n}-f\right|=0 \text { a.e. on } D \\
& \Rightarrow f_{n} \rightarrow f \text { a.e. on } D .
\end{aligned}
$$

Problem 56

Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}\right)$ and f be extended real-valued measurable functions on $D \in \mathcal{A}$ and assume that f is real-valued a.e. on D. Suppose $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right|^{p} d \mu=0$ for some fixed $p \in(0, \infty)$. Show that

$$
f_{n} \xrightarrow{\mu} f \text { on } D .
$$

Solution

Given any $\varepsilon>0$. For every $n \in \mathbb{N}$, let $A_{n}=\left\{D:\left|f_{n}-f\right| \geq \varepsilon\right\}$. Then

$$
\begin{aligned}
\int_{D}\left|f_{n}-f\right|^{p} d \mu & =\int_{A_{n}}\left|f_{n}-f\right|^{p} d \mu+\int_{D \backslash A_{n}}\left|f_{n}-f\right|^{p} d \mu \\
& \geq \int_{A_{n}}\left|f_{n}-f\right|^{p} d \mu \\
& \geq \varepsilon^{p} \mu\left(A_{n}\right)
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right|^{p} d \mu=0, \quad \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. This means that

$$
f_{n} \xrightarrow{\mu} f \text { on } D .
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 57

Let (X, \mathcal{A}, μ) be a measure space and let f be an extended real-valued \mathcal{A} measurable function on X such that $\int_{X}|f|^{p} d \mu<\infty$ for some fixed $p \in(0, \infty)$.
Show that

$$
\lim _{\lambda \rightarrow \infty} \lambda^{p} \mu\{X:|f| \geq \lambda\}=0
$$

Solution

For $n=0,1,2, \ldots$, let $E_{n}=\{D: n \leq|f|<n+1\}$. Then $E_{n} \in \mathcal{A}$ and the E_{n} 's are disjoint. Moreover, $X=\bigcup_{n=0}^{\infty} E_{n}$. We have

$$
\infty>\int_{X}|f|^{p} d \mu=\sum_{n=0}^{\infty} \int_{E_{n}}|f|^{p} d \mu \geq \sum_{n=0}^{\infty} n^{p} \mu\left(E_{n}\right)
$$

Since $\sum_{n=0}^{\infty} n^{p} \mu\left(E_{n}\right)<\infty$, for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$ we have

$$
\sum_{n=N}^{\infty} n^{p} \mu\left(E_{n}\right)<\varepsilon
$$

Note that $n^{p} \geq N^{p}$ since $p>0$. So we have

$$
N^{p} \sum_{n=N}^{\infty} \mu\left(E_{n}\right)<\varepsilon .
$$

But $\bigcup_{n=N}^{\infty} E_{n}=\{X:|f| \geq N\}$. So with the above N, we have

$$
N^{p} \mu\left(\bigcup_{n=N}^{\infty} E_{n}\right)=N^{p} \mu\{X:|f| \geq N\}<\varepsilon
$$

Thus,

$$
\lim _{\lambda \rightarrow \infty} \lambda^{p} \mu\{X:|f| \geq \lambda\}=0
$$

Problem 58

Let (X, \mathcal{A}, μ) be a σ-finite measure space. Let f be an extended real-valued \mathcal{A} measurable function on X. Show that for every $p \in(0, \infty)$ we have

$$
\int_{X}|f|^{p} d \mu=\int_{[0, \infty)} p \lambda^{p-1} \mu\{X:|f|>\lambda\} \mu_{L}(d \lambda) . \quad(*)
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

We may suppose $f \geq 0$ (otherwise we set $g=|f| \geq 0$).

1. If $f=\chi_{E}, \quad E \in \mathcal{A}$, then

$$
\begin{aligned}
& \int_{X} f^{p} d \mu=\int_{X}\left(\chi_{E}\right)^{p} d \mu=\mu(E) . \\
& \int_{[0, \infty)} p \lambda^{p-1} \mu\left\{X: \chi_{E}>\lambda\right\} \mu_{L}(d \lambda)=\int_{0}^{1} p \lambda^{p-1} \mu(E) d \lambda=\mu(E) .
\end{aligned}
$$

Thus, the equality ($*$) holds.
2. If $f=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ (simple function), with $a_{i} \geq 0, \quad E_{i} \in \mathcal{A}, i=1, \ldots, n$., then the equality $(*)$ holds because of the linearity of the integral.
3. If $f \geq 0$ measurable, then there is a sequence $\left(\varphi_{n}\right)$ of non-negative measurable simple functions such that $\varphi_{n} \uparrow f$. By the Monotone Convergence Theorem we have

$$
\begin{aligned}
\int_{X} f^{p} d \mu & =\lim _{n \rightarrow \infty} \int_{X} \varphi_{n}^{p} d \mu \\
& =\lim _{n \rightarrow \infty} \int_{[0, \infty)} p \lambda^{p-1} \mu\left\{X: \varphi_{n}>\lambda\right\} \mu_{L}(d \lambda) \\
& =\int_{[0, \infty)} p \lambda^{p-1} \mu\{X: f>\lambda\} \mu_{L}(d \lambda)
\end{aligned}
$$

Notes:

1. $A=\left\{X: \chi_{E}>\lambda\right\}=\left\{x \in X: \chi_{E}(x)>\lambda\right\}$.

- If $0 \leq \lambda<1$ then $A=E$.
- If $\lambda \geq 1$ then $A=\emptyset$.

2. Why σ-finite measure?

Problem 59

Given a measure space (X, \mathcal{A}, μ). Let f be a non-negative extended real-valued \mathcal{A}-measurable function on $D \in \mathcal{A}$ with $\mu(D)<\infty$.
Let $D_{n}=\{x \in D: f(x) \geq n\}$ for $n \in \mathbb{N}$. Show that

$$
\int_{D} f d \mu<\infty \Leftrightarrow \sum_{n \in \mathbb{N}} \mu\left(D_{n}\right)<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Solution

From the expression $D_{n}=\{x \in D: f(x) \geq n\}$ with $f \mathcal{A}$-measurable, we deduce that $D_{n} \in \mathcal{A}$ and

$$
D:=D_{0} \supset D_{1} \supset D_{2} \supset \ldots \supset D_{n} \supset D_{n+1} \supset \ldots
$$

Moreover, all the sets $D_{n} \backslash D_{n+1}=\{D: n \leq f<n+1, n \in \mathbb{N}\}$ are disjoint and

$$
D=\bigcup_{n \in \mathbb{N}}\left(D_{n} \backslash D_{n+1}\right)
$$

It follows that

$$
\begin{align*}
n \mu\left(D_{n} \backslash D_{n+1}\right) & \leq \int_{D_{n} \backslash D_{n+1}} f d \mu \leq(n+1) \mu\left(D_{n} \backslash D_{n+1}\right) \\
\sum_{n=0}^{\infty} n \mu\left(D_{n} \backslash D_{n+1}\right) & \leq \int_{\bigcup_{n \in \mathbb{N}}\left(D_{n} \backslash D_{n+1}\right)} f d \mu \leq \sum_{n=0}^{\infty}(n+1) \mu\left(D_{n} \backslash D_{n+1}\right) \\
\sum_{n=0}^{\infty} n \mu\left[\left(D_{n}\right)-\mu\left(D_{n+1}\right)\right] & \leq \int_{D} f d \mu \leq \sum_{n=0}^{\infty}(n+1)\left[\mu\left(D_{n}\right)-\mu\left(D_{n+1}\right)\right] . \quad \text { (i) } \tag{i}
\end{align*}
$$

Some more calculations:

$$
\begin{aligned}
\sum_{n=0}^{\infty} n \mu\left[\left(D_{n}\right)-\mu\left(D_{n+1}\right)\right] & =1\left[\mu\left(D_{1}\right)-\mu\left(D_{2}\right)\right]+2\left[\mu\left(D_{2}\right)-\mu\left(D_{3}\right)\right]+\ldots \\
& =\sum_{n=1}^{\infty} \mu\left(D_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1)\left[\mu\left(D_{n}\right)-\mu\left(D_{n+1}\right)\right] & =1\left[\mu\left(D_{0}\right)-\mu\left(D_{1}\right)\right]+2\left[\mu\left(D_{1}\right)-\mu\left(D_{2}\right)\right]+\ldots \\
& =\mu(D)+\sum_{n=1}^{\infty} \mu\left(D_{n}\right)
\end{aligned}
$$

With these, we rewrite (i) as follows

$$
\sum_{n=1}^{\infty} \mu\left(D_{n}\right) \leq \int_{D} f d \mu \leq \mu(D)+\sum_{n=1}^{\infty} \mu\left(D_{n}\right)
$$

Since $\mu(D)<\infty$, we have

$$
\int_{D} f d \mu<\infty \Leftrightarrow \sum_{n \in \mathbb{N}} \mu\left(D_{n}\right)<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 60

Given a measure space (X, \mathcal{A}, μ) with $\mu(X)<\infty$. Let f be a non-negative extended real-valued \mathcal{A}-measurable function on X. Show that f is μ-integrable on X if and only if

$$
\sum_{n=0}^{\infty} 2^{n} \mu\left\{x \in X: \quad f(x)>2^{n}\right\}<\infty
$$

Solution

Let $E_{n}=\left\{X: f>2^{n}\right\}$ for each $n=0,1,2, \ldots$ Then it is clear that

$$
\begin{aligned}
& E_{0} \supset E_{1} \supset \ldots \supset E_{n} \supset E_{n+1} \supset \ldots \\
& E_{n} \backslash E_{n+1}=\left\{X: 2^{n}<f \leq 2^{n+1}\right\} \text { and are disjoint } \\
& X \backslash E_{0}=\{X: 0 \leq f \leq 1\} \\
& X=\left(X \backslash E_{0}\right) \cup \bigcup_{n=0}^{\infty}\left(E_{n} \backslash E_{n+1}\right) .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X \backslash E_{0}} f d \mu+\int_{\bigcup_{n=0}^{\infty}\left(E_{n} \backslash E_{n+1}\right)} f d \mu \\
& =\int_{X \backslash E_{0}} f d \mu+\sum_{n=0}^{\infty} \int_{E_{n} \backslash E_{n+1}} f d \mu .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \int_{E_{n} \backslash E_{n+1}} f d \mu=\int_{X} f d \mu-\int_{X \backslash E_{0}} f d \mu \tag{6.3}
\end{equation*}
$$

On the other hand, for $n=0,1,2, \ldots$, we have

$$
2^{n} \mu\left(E_{n} \backslash E_{n+1}\right) \leq \int_{E_{n} \backslash E_{n+1}} f d \mu \leq 2^{n+1} \mu\left(E_{n} \backslash E_{n+1}\right)
$$

Therefore,

$$
\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n} \backslash E_{n+1}\right) \leq \sum_{n=0}^{\infty} \int_{E_{n} \backslash E_{n+1}} f d \mu \leq \sum_{n=0}^{\infty} 2^{n+1} \mu\left(E_{n} \backslash E_{n+1}\right)
$$

www.MATHVN.com - Anh Quang Le, PhD

From (6.3) we obtain

$$
\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n} \backslash E_{n+1}\right)+\int_{X \backslash E_{0}} f d \mu \leq \int_{X} f d \mu \leq \sum_{n=0}^{\infty} 2^{n+1} \mu\left(E_{n} \backslash E_{n+1}\right)+\int_{X \backslash E_{0}} f d \mu
$$

Since

$$
0 \leq \int_{X \backslash E_{0}} f d \mu \leq \mu\left(X \backslash E_{0}\right) \leq \mu(X)<\infty
$$

we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n} \backslash E_{n+1}\right) \leq \int_{X} f d \mu \leq \sum_{n=0}^{\infty} 2^{n+1} \mu\left(E_{n} \backslash E_{n+1}\right)+\mu(X) \tag{6.4}
\end{equation*}
$$

Some more calculations:

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n} \backslash E_{n+1}\right) & =\sum_{n=0}^{\infty} 2^{n}\left[\mu\left(E_{n}\right)-\mu\left(E_{n+1}\right)\right] \\
& =\mu\left(E_{0}\right)-\mu\left(E_{1}\right)+2\left[\mu\left(E_{1}\right)-\mu\left(E_{2}\right)\right]+4\left[\mu\left(E_{2}\right)-\mu\left(E_{3}\right)\right]+\ldots \\
& =\mu\left(E_{0}\right)+\mu\left(E_{1}\right)+2 \mu\left(E_{2}\right)+4 \mu\left(E_{3}\right)+\ldots \\
& =\frac{1}{2} \mu\left(E_{0}\right)+\frac{1}{2} \sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2^{n+1} \mu\left(E_{n} \backslash E_{n+1}\right) & =\sum_{n=0}^{\infty} 2^{n+1}\left[\mu\left(E_{n}\right)-\mu\left(E_{n+1}\right)\right] \\
& =2\left[\mu\left(E_{0}\right)-\mu\left(E_{1}\right)\right]+4\left[\mu\left(E_{1}\right)-\mu\left(E_{2}\right)\right]+8\left[\mu\left(E_{2}\right)-\mu\left(E_{3}\right)\right]+\ldots \\
& =\mu\left(E_{0}\right)+\left[\mu\left(E_{0}\right)+2 \mu\left(E_{1}\right)+4 \mu\left(E_{2}\right)+8 \mu\left(E_{3}\right)+\ldots\right] \\
& =\mu\left(E_{0}\right)+\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right)
\end{aligned}
$$

With these, we rewrite (6.4) as follows

$$
\frac{1}{2} \mu\left(E_{0}\right)+\frac{1}{2} \sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right) \leq \int_{X} f d \mu \leq \mu\left(E_{0}\right)+\sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right)+\mu(X)
$$

This implies that

$$
\frac{1}{2} \sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right) \leq \int_{X} f d \mu \leq \sum_{n=0}^{\infty} 2^{n} \mu\left(E_{n}\right)+2 \mu(X)
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $\mu(X)<\infty$, we have

$$
\int_{X} f d \mu<\infty \Leftrightarrow \sum_{n=0}^{\infty} 2^{n} \mu\left\{x \in X: \quad f(x)>2^{n}\right\}<\infty
$$

Problem 61

(a) Let $\left\{c_{n, i}: n, i \in \mathbb{N}\right\}$ be an array of non-negative extended real numbers. Show that

$$
\liminf _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i} \geq \sum_{i \in \mathbb{N}} \liminf _{n \rightarrow \infty} c_{n, i} .
$$

(b) Show that if $\left(c_{n, i}: n \in \mathbb{N}\right)$ is an increasing sequence for each $i \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i}=\sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} c_{n, i} .
$$

Solution

(a) Let $\nu: \mathbb{N} \rightarrow[0, \infty]$ denote the counting measure. Consider the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$. It is a measure space in which every $A \subset \mathbb{N}$ is measurable. Let $i \mapsto b(i)$ be any function on \mathbb{N}. Then

$$
\int_{\mathbb{N}} b d \nu=\sum_{i \in \mathbb{N}} b(i) .
$$

For the array $\left\{c_{n, i}\right\}$, for each $i \in \mathbb{N}$, we can write $c_{n, i}=c_{n}(i), n \in \mathbb{N}$. Then c_{n} is a non-negative ν-measurable function defined on \mathbb{N}. By Fatou's lemma,

$$
\int_{\mathbb{N}} \liminf _{n \rightarrow \infty} c_{n} d \nu \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{N}} c_{n} d \nu
$$

that is

$$
\sum_{i \in \mathbb{N}} \liminf _{n \rightarrow \infty} c_{n, i} \leq \liminf _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i} .
$$

(b) If $\left(c_{n, i}: n \in \mathbb{N}\right)$ is an increasing sequence for each $i \in \mathbb{N}$, then the sequence of functions $\left(c_{n}\right)$ is non-negative increasing. By the Monotone Convergence Theorem we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{N}} c_{n}(i) d \nu=\int_{\mathbb{N}} \lim _{n \rightarrow \infty} c_{n}(i) d \nu
$$

that is

$$
\lim _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i}=\sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} c_{n, i} .
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 7

Integration of Measurable Functions

Given a measure space (X, \mathcal{A}, μ). Let f be a measurable function on a set $D \in \mathcal{A}$. We define the positive and negative parts of f by

$$
f^{+}:=\max \{f, 0\} \text { and } f^{-}:=\max \{-f, 0\}
$$

Then we have

$$
f=f^{+}-f^{-} \quad \text { and }|f|=f^{+}+f^{-}
$$

Definition 20 Let f be an extended real-valued measurable function on D. The function f is said to be integrable on D if f^{+}and f^{-}are both integrable on D. In this case we define

$$
\int_{D} f d \mu=\int_{D} f^{+} d \mu-\int_{D} f^{-} d \mu
$$

Proposition 20 (Properties)

1. f is integrable on D if and only if $|f|$ is integrable on D.
2. If f is integrable on D then $c f$ is integrable on D, and we have $\int_{D} c f d \mu=c \int_{D} f d \mu$, where c is a constant in \mathbb{R}.
3. If f and g are integrable on D then $f+g$ are integrable on D, and we have $\int_{D}(f+g) d \mu=$ $\int_{D} f d \mu+\int_{D} g d \mu$.
4. $f \leq g \Rightarrow \int_{D} f d \mu \leq \int_{D} g d \mu$.
5. If f is integrable on D then $|f|<\infty$ a.e. on D, that is, f is real-valued a.e. on D.
6. If $\left\{D_{1}, \ldots, D_{n}\right\}$ is a disjoint collection in \mathcal{A}, then

$$
\int_{\bigcup_{i=1}^{n} D_{i}} f d \mu=\sum_{i=1}^{n} \int_{D_{i}} f d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

Theorem 8 (generalized monotone convergence theorem)
Let $\left(f_{n}\right)$ be a sequence of integrable extended real-valued functions on D.

1. If $\left(f_{n}\right)$ is increasing and there is a extended real-valued measurable function g such that $f_{n} \geq g$ for every $n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} f_{n} d \mu=\int_{D} g d \mu
$$

2. If $\left(f_{n}\right)$ is decreasing and there is a extended real-valued measurable function g such that $f_{n} \leq g$ for every $n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} f_{n} d \mu=\int_{D} g d \mu
$$

Theorem 9 (Lebesgue dominated convergence theorem theorem - D.C.T)
Let $\left(f_{n}\right)$ be a sequence of integrable extended real-valued functions on D and g be an integrable nonnegative extended real-valued function on D such that $\left|f_{n}\right| \leq g$ on D for every $n \in \mathbb{N}$. If $\lim _{n \rightarrow \infty} f_{n}=f$ exists a.e. on D, then f is integrable on D and

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu \text { and } \lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

Problem 62

Prove this statement:
Let f be extended real-valued measurable function on a measurable set D. If f is integrable on D, then the set $\{D: f \neq 0\}$ is a σ-finite set.

Solution

For every $n \in \mathbb{N}$ set

$$
D_{n}=\left\{x \in D:|f(x)| \geq \frac{1}{n}\right\}
$$

Then we have

$$
\{x \in D: f(x) \neq 0\}=\{x \in D:|f(x)|>0\}=\bigcup_{n \in \mathbb{N}} D_{n} .
$$

Now for each $n \in \mathbb{N}$ we have

$$
\frac{1}{n} \mu\left(D_{n}\right) \leq \int_{D_{n}}|f| d \mu \leq \int_{D}|f| d \mu<\infty
$$

Thus

$$
\mu\left(D_{n}\right)=\mu<\infty, \forall n \in \mathbb{N}
$$

that is, the set $\{x \in D: f(x) \neq 0\}$ is σ-finite.

www.MATHVN.com - Anh Quang Le, PhD

Problem 63

Let f be extended real-valued measurable function on a measurable set D. If $\left(E_{n}\right)$ is an increasing sequence of measurable sets such that $\lim _{n \rightarrow \infty} E_{n}=D$, then

$$
\int_{D} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu .
$$

Solution

Since $\left(E_{n}\right)$ is an increasing sequence with limit D, so by definition, we have

$$
D=\bigcup_{n=1}^{\infty} E_{n} .
$$

Let

$$
D_{1}=E_{1} \quad \text { and } \quad D_{n}=E_{n} \backslash E_{n+1}, \quad n \geq 2
$$

Then $\left\{D_{1}, D_{2}, \ldots\right\}$ is a disjoint collection of measurable sets, and we have

$$
\bigcup_{i=1}^{n} D_{i}=E_{n} \text { and } \bigcup_{n=1}^{\infty} D_{n}=\bigcup_{n=1}^{\infty} E_{n}=D
$$

Hence

$$
\begin{aligned}
\int_{D} f d \mu & =\sum_{n=1}^{\infty} \int_{D_{n}} f d \mu=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int_{D_{i}} f d \mu \\
& =\lim _{n \rightarrow \infty} \int_{\bigcup_{i=1}^{n} D_{i}} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu
\end{aligned}
$$

Problem 64

Let (X, \mathcal{A}, μ) be a measure space. Let f and g be extended real-valued measurable functions on X. Suppose that f and g are integrable on X and $\int_{E} f d \mu=\int_{E} g d \mu$ for every $E \in \mathcal{A}$. Show that $f=g$ a.e. on X.

Solution

- Case 1: f and g are two real-valued integrable functions on X.

Assume that the statement $f=g$ a.e. on X is false. Then at least one of the two
sets $E=\{X: f<g\}$ and $F=\{X: f>g\}$ has a positive measure. Consider the case $\mu(E)>0$. Now since both f and g are real-valued, we have

$$
E=\bigcup_{k \in \mathbb{N}} E_{k} \text { where } E_{k}=E=\left\{X: g-f \geq \frac{1}{k}\right\}
$$

Then $0<\mu(E) \leq \sum_{k \in \mathbb{N}} \mu\left(E_{k}\right)$. Thus there exists $k_{0} \in \mathbb{N}$ such that $\mu\left(E_{k_{0}}\right)>0$, so that

$$
\int_{E_{k_{0}}}(g-f) d \mu \geq \frac{1}{k_{0}} \mu\left(E_{k_{0}}\right)>0 .
$$

Therefore

$$
\int_{E_{k_{0}}} g d \mu \geq \int_{E_{k_{0}}} f d \mu+\frac{1}{k_{0}} \mu\left(E_{k_{0}}\right)>\int_{E_{k_{0}}} f d \mu
$$

This is a contradiction. Thus $\mu(E)=0$. Similarly, $\mu(F)=0$. This shows that $f=g$ a.e. on X.

- Case 2: General case, where f and g are two extended real-valued integrable functions on X. The integrability of f and g implies that f and g are real-valued a.e. on X. Thus there exists a null set $N \subset X$ such that f and g are real-valued on $X \backslash N$. Set

$$
\bar{f}=\left\{\begin{array}{ll}
f & \text { on } X \backslash N, \\
0 & \text { on } N .
\end{array} \quad \text { and } \quad \bar{g}= \begin{cases}g & \text { on } X \backslash N, \\
0 & \text { on } N .\end{cases}\right.
$$

Then \bar{f} and \bar{g} are real-valued on X, and so on every $E \in \mathcal{A}$ we have

$$
\int_{E} \bar{f} d \mu=\int_{E} f d \mu=\int_{E} \bar{g} d \mu=\int_{E} g d \mu .
$$

By the first part of the proof, we have $\bar{f}=\bar{g}$ a.e. on X. Since $\bar{f}=f$ a.e. on X and $\bar{g}=g$ a.e. on X, we deduce that

$$
f=g \text { a.e. on } X .
$$

Problem 65

Let (X, \mathcal{A}, μ) be a σ-finite measure space and let f, g be extended real-valued measurable functions on X. Show that if $\int_{E} f d \mu=\int_{E} g d \mu$ for every $E \in \mathcal{A}$ then $f=g$ a.e. on X. (Note that the integrability of f and g is not assumed.)

www.MATHVN.com - Anh Quang Le, PhD

Solution

The space (X, \mathcal{A}, μ) is σ-finite :

$$
X=\bigcup_{n \in \mathbb{N}} X_{n}, \mu\left(X_{n}\right)<\infty, \quad \forall n \in \mathbb{N} \text { and }\left\{X_{n}: n \in \mathbb{N}\right\} \text { are disjoint. }
$$

To show $f=g$ a.e. on X it suffices to show $f=g$ a.e. on each X_{n} (since countable union of null sets is a null set).
Assume that the conclusion is false, that is if $E=\left\{X_{n}: f<g\right\}$ and $F=\left\{X_{n}\right.$: $f>g\}$ then at least one of the two sets has a positive measure. Without lost of generality, we may assume $\mu(E)>0$.
Now, E is composed of three disjoint sets:

$$
\begin{aligned}
& E^{(1)}=\left\{X_{n}:-\infty<f<g<\infty\right\}, \\
& E^{(2)}=\left\{X_{n}:-\infty<f<g=\infty\right\}, \\
& E^{(3)}=\left\{X_{n}:-\infty=f<g<\infty\right\} .
\end{aligned}
$$

Since $\mu(E)>0$, at least one of these sets has a positive measure.

1. $\mu\left(E^{(1)}\right)>0$. Let

$$
E_{m, k, l}^{(1)}=\left\{X_{n}:-m \leq f ; f+\frac{1}{k} \leq g ; g \leq l\right\}
$$

Then

$$
E^{(1)}=\bigcup_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} E_{m, k, l}^{(1)} .
$$

By assumption and the subadditivity of μ we have

$$
0<\mu\left(E^{(1)} \leq \sum_{m, k, l \in \mathbb{N}} \mu\left(E_{m, k, l}^{(1)}\right)\right.
$$

This implies that there are some $m_{0}, k_{0}, l_{0} \in \mathbb{N}$ such that

$$
\mu\left(E_{m_{0}, k_{0}, l_{0}}\right)>0 .
$$

Let $E^{*}=E_{m_{0}, k_{0}, l_{0}}$ then we have

$$
\int_{E^{*}}(g-f) d \mu \geq \frac{1}{k_{0}} \mu\left(E^{*}\right)>0 \text { so } \int_{E^{*}} g d \mu>\int_{E^{*}} f d \mu .
$$

This is a contradiction.
2. $\mu\left(E^{(2)}\right)>0$. Let

$$
E_{l}^{(2)}=\left\{X_{n}:-\infty<f \leq l ; g=\infty\right\}
$$

Then

$$
E^{(2)}=\bigcup_{l \in \mathbb{N}} E_{l}^{(2)}
$$

By assumption and the subadditivity of μ we have

$$
0<\mu\left(E^{(2)}\right) \leq \sum_{l \in \mathbb{N}} \mu\left(E_{l}^{(2)}\right)
$$

This implies that there is some $l_{0} \in \mathbb{N}$ such that

$$
\mu\left(E_{l_{0}}^{(2)}\right)>0
$$

Let $E^{* *}=E_{l_{0}}^{(2)}$. Then

$$
\int_{E^{* *}} g d \mu=\infty>\int_{E^{* *}} f d \mu .
$$

This contradicts the assumption that $\int_{E} f d \mu=\int_{E} g d \mu$ for every $E \in \mathcal{A}$.
3. $\mu\left(E^{(3)}\right)>0$. Let

$$
E_{m}^{(2)}=\left\{X_{n}:-\infty=f ;-m \leq g<\infty\right\}
$$

Then

$$
E^{(3)}=\bigcup_{m \in \mathbb{N}} E_{m}^{(3)}
$$

By assumption and the subadditivity of μ we have

$$
0<\mu\left(E^{(3)}\right) \leq \sum_{m \in \mathbb{N}} \mu\left(E_{m}^{(3)}\right) .
$$

This implies that there is some $m_{0} \in \mathbb{N}$ such that

$$
\mu\left(E_{m_{0}}^{(3)}\right)>0 .
$$

Let $E^{* * *}=E_{m_{0}}^{(3)}$. Then

$$
\int_{E^{* * *}} g d \mu \geq-m \mu\left(E^{* * *}\right)>-\infty=\int_{E^{* * *}} f d \mu:
$$

This contradicts the assumption.
Thus, $\mu(E)=0$. Similarly, we get $\mu(F)=0$. That is $f=g$ a.e. on X.

www.MATHVN.com - Anh Quang Le, PhD

Problem 66

Given a measure space (X, \mathcal{A}, μ). Let f be extended real-valued measurable and integrable function on X.

1. Show that for any $\varepsilon>0$ there exists $\delta>0$ such that if $A \in \mathcal{A}$ with $\mu(A)<\delta$ then

$$
\left|\int_{A} f d \mu\right|<\varepsilon
$$

2. Let $\left(E_{n}\right)$ be a sequence in \mathcal{A} such that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$. Show that $\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu=0$.

Solution

1. For every $n \in \mathbb{N}$, set

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } f(x) \leq n \\ n & \text { otherwise }\end{cases}
$$

Then the sequence $\left(f_{n}\right)$ is increasing. Each f_{n} is bounded and $f_{n} \rightarrow f$ pointwise. By the Monotone Convergence Theorem,

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { such that }\left|\int_{X} f_{N} d \mu-\int_{X} f d \mu\right|<\frac{\varepsilon}{2}
$$

Take $\delta=\frac{\varepsilon}{2 N}$. If $\mu(A)<\delta$, we have

$$
\begin{aligned}
\left|\int_{A} f d \mu\right| & \leq\left|\int_{A}\left(f_{N}-f\right) d \mu\right|+\left|\int_{A} f_{N} d \mu\right| \\
& \leq\left|\int_{X}\left(f_{N}-f\right) d \mu\right|+N \mu(A) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2 \delta} \delta=\varepsilon
\end{aligned}
$$

2. Since $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$, with ε and δ as above, there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}, \quad \mu\left(E_{n}\right)<\delta$. Then we have

$$
\left|\int_{E_{n}} f d \mu\right|<\varepsilon
$$

This shows that $\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu=0$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 67

Given a measure space (X, \mathcal{A}, μ). Let f be extended real-valued \mathcal{A}-measurable and integrable function on X. Let $E_{n}=\{x \in X:|f(x)| \geq n\}$ for $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$.

Solution

First we note that $X=E_{0}$. For each $n \in \mathbb{N}$, we have

$$
E_{n} \backslash E_{n+1}=\{X: n \leq|f|<n+1\} .
$$

Moreover, the collection $\left\{E_{n} \backslash E_{n+1}: n \in \mathbb{N}\right\} \subset \mathcal{A}$ consists of measurable disjoint sets and

$$
\bigcup_{n=0}^{\infty}\left(E_{n} \backslash E_{n+1}\right)=X
$$

By the integrability of f we have

$$
\infty>\int_{X}|f| d \mu=\sum_{n=0}^{\infty} \int_{E_{n} \backslash E_{n+1}}|f| d \mu \geq \sum_{n=0}^{\infty} n \mu\left(E_{n} \backslash E_{n+1}\right)
$$

Some more calculations for the last summation:

$$
\begin{aligned}
\sum_{n=0}^{\infty} n \mu\left(E_{n} \backslash E_{n+1}\right) & =\sum_{n=0}^{\infty} n\left[\mu\left(E_{n}\right)-\mu\left(E_{n+1}\right)\right] \\
& =\mu\left(E_{1}\right)-\mu\left(E_{2}\right)+2\left[\mu\left(E_{2}\right)-\mu\left(E_{3}\right)\right]+3\left[\mu\left(E_{3}\right)-\mu\left(E_{4}\right)\right]+\ldots \\
& =\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
\end{aligned}
$$

Since the series $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ converges, $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$.

Problem 68

Let (X, \mathcal{A}, μ) be a measure space.
(a) Let $\left\{E_{n}: n \in \mathbb{N}\right\}$ be a disjoint collection in \mathcal{A}. Let f be an extended realvalued \mathcal{A}-measurable function defined on $\bigcup_{n \in \mathbb{N}} E_{n}$. If f is integrable on E_{n} for every $n \in \mathbb{N}$, does $\int_{\bigcup_{n \in \mathbb{N}} E_{n}} f d \mu$ exist?
(b) Let $\left(F_{n}: n \in \mathbb{N}\right)$ be an increasing sequence in \mathcal{A}. Let f be an extended realvalued \mathcal{A}-measurable function defined on $\bigcup_{n \in \mathbb{N}} F_{n}$. Suppose f is integrable on E_{n} for every $n \in \mathbb{N}$ and moreover $\lim _{n \rightarrow \infty} \int_{F_{n}} f d \mu$ exists in \mathbb{R}. Does $\int_{\bigcup_{n \in \mathbb{N}} F_{n}} f d \mu$ exist?

www.MATHVN.com - Anh Quang Le, PhD

Solution

(a) NO.

$$
\begin{aligned}
& X=[1, \infty), \quad E_{n}=[n, n+1), \quad n=1,2, \ldots,\left\{E_{n}\right\} \text { disjoint. } \\
& \mathcal{A}=\mathcal{M}_{L}, \quad \mu_{L} . \\
& X=\bigcup_{n \in \mathbb{N}} E_{n}, \quad f(x)=1, \quad \forall x \in X . \\
& \int_{E_{n}} f d \mu=1, \quad \forall n \in \mathbb{N}, \quad \int_{\bigcup_{n \in \mathbb{N}} E_{n}} f d \mu=\int_{[1, \infty)} 1 d \mu=\infty .
\end{aligned}
$$

(b) NO.

$$
\begin{aligned}
& X=\mathbb{R}, \quad F_{n}=(-n, n), \quad n=1,2, \ldots, \quad\left(F_{n}: \quad n \in \mathbb{N}\right) \text { increasing } \\
& \mathcal{A}=\mathcal{M}_{L}, \quad \mu_{L} \\
& X=\bigcup_{n \in \mathbb{N}} F_{n}, \quad f(x)=1 \text { for } x \geq 0, \quad f(x)=-1 \text { for } x<0 \\
& \int_{F_{n}} f d \mu=\int_{(-n, 0)}(-1) d \mu+\int_{[0, n)} 1 d \mu=0 \Rightarrow \lim _{n \rightarrow \infty} \int_{F_{n}} f d \mu=0 \\
& \int_{\bigcup_{n \in \mathbb{N}} F_{n}} f d \mu=\int_{\mathbb{R}} f d \mu=\int_{(-\infty, 0)}(-1) d \mu+\int_{(0, \infty)} 1 d \mu \text { does not exist. }
\end{aligned}
$$

Problem 69

Let f is a real-valued uniformly continuous function on $[0, \infty)$. Show that if f is Lebesgue integrable on $[0, \infty)$, then

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Solution

Suppose NOT. Then there exists $\varepsilon>0$ such that for each $n \in \mathbb{N}$, there is $x_{n}>n$ such that $\left|f\left(x_{n}\right)\right| \geq \varepsilon$. W.L.O.G. we may choose $\left(x_{n}\right)$ such that

$$
x_{n+1}>x_{n}+1 \text { for all } n \in \mathbb{N} .
$$

Since f is uniformly continuous on $[0, \infty)$, with the above ε,

$$
\exists \delta \in\left(0, \frac{1}{2}\right):|x-y|<\delta \Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{2}
$$

In particular, for $x \in I_{n}=\left(x_{n}-\delta, x_{n}+\delta\right)$, we have

$$
\left|f\left(x_{n}\right)-f(x)\right|<\frac{\varepsilon}{2}, \quad \forall n \in \mathbb{N} .
$$

This implies

$$
\left|f\left(x_{n}\right)\right|-|f(x)|<\frac{\varepsilon}{2} \Rightarrow|f(x)|>\left|f\left(x_{n}\right)\right|-\frac{\varepsilon}{2} \geq \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2} .
$$

Since $x_{n+1}-x_{n}>1$ and $0<\delta<\frac{1}{2}, \quad I_{n} \cap I_{n+1}=\emptyset$. Moreover, $\bigcup_{n=1}^{\infty} I_{n} \subset[0, \infty)$. By assumption, f is integrable on $[0, \infty)$, so we have

$$
\infty>\int_{[0, \infty)} f d \mu \geq \sum_{n=1}^{\infty} \int_{I_{n}} f d \mu>\sum_{n=1}^{\infty} \int_{I_{n}} \frac{\varepsilon}{2} d \mu=\infty
$$

This is a contradiction. Thus,

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Problem 70

Let (X, \mathcal{A}, μ) be a measure space and let $\left(f_{n}\right)_{n \in \mathbb{N}}$, and f, g be extended real-valued \mathcal{A}-measurable and integrable functions on $D \in \mathcal{A}$. Suppose that

1. $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on D.
2. $\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu$.
3. either $f_{n} \geq g$ on D for all $n \in \mathbb{N}$ or $f_{n} \leq g$ on D for all $n \in \mathbb{N}$.

Show that, for every $E \in \mathcal{A}$ and $E \subset D$, we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Solution

(a) First we solve the problem in the case the condition 3 . is replaced by $f_{n} \geq 0$ on D for all $n \in \mathbb{N}$.
Let $h_{n}=f_{n}-f_{n} \chi_{E}$ for every $E \in \mathcal{A}$ and $E \subset D$. Then $h_{n} \geq 0$ and \mathcal{A}-measurable

www.MATHVN.com - Anh Quang Le, PhD

and integrable on D. Applying Fatou's lemma to h_{n} and using assumptions, we get

$$
\begin{aligned}
\int_{D} f d \mu-\int_{E} f d \mu=\int_{D}\left(f-f \chi_{E}\right) d \mu & \leq \liminf _{n \rightarrow \infty} \int_{D}\left(f_{n}-f_{n} \chi_{E}\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu-\limsup _{n \rightarrow \infty} \int_{D} f_{n} \chi_{E} d \mu \\
& =\int_{D} f d \mu-\limsup _{n \rightarrow \infty} \int_{E} f_{n} d \mu .
\end{aligned}
$$

Since f is integrable on $D, \quad \int_{D} f d \mu<\infty$. From the last inequality we obtain,

$$
(*) \quad \limsup _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \int_{E} f d \mu \text {. }
$$

Let $k_{n}=f_{n}+f_{n} \chi_{E}$ for every $E \in \mathfrak{A}$ and $E \subset D$. Using the same way as in the previous paragraph, we get

$$
(* *) \quad \int_{E} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d \mu .
$$

From (*) and (**) we get

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Next we are coming back to the problem. Assume $f_{n} \geq g$ on D for all $n \in \mathbb{N}$. Let $\varphi_{n}=f_{n}-g$. Using the above result for $\varphi_{n} \geq 0$ we get

$$
\lim _{n \rightarrow \infty} \int_{E} \varphi_{n} d \mu=\int_{E} \varphi d \mu
$$

That is

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{E}\left(f_{n}-g\right) d \mu=\int_{E}(f-g) d \mu \\
& \lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu-\int_{E} g d \mu=\int_{E} f d \mu-\int_{E} g d \mu
\end{aligned}
$$

Since g is integrable on $E, \int_{E} g d \mu<\infty$. Thus, we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Problem 71(An extension of the Dominated Convergence Theorem)
Let (X, \mathcal{A}, μ) be a measure space and let $\left(f_{n}\right)_{n \in \mathbb{N}},\left(g_{n}\right)_{n \in \mathbb{N}}$, and f, g be extended real-valued \mathcal{A}-measurable functions on $D \in \mathcal{A}$. Suppose that

1. $\lim _{n \rightarrow \infty} f_{n}=f$ and $\lim _{n \rightarrow \infty} g_{n}=g$ a.e. on D.
2. $\left(g_{n}\right)$ and g are all integrable on D and $\lim _{n \rightarrow \infty} \int_{D} g_{n} d \mu=\int_{D} g d \mu$.
3. $\left|f_{n}\right| \leq g_{n}$ on D for every $n \in \mathbb{N}$.

Prove that f is integrable on D and $\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu$.

Solution

Consider the sequence $\left(g_{n}-f_{n}\right)$. Since $\left|f_{n}\right| \leq g_{n}$, and $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are sequences of measurable functions, the sequence $\left(g_{n}-f_{n}\right)$ consists of non-negative measurable functions. Using the Fatou's lemma we have

$$
\begin{aligned}
& \int_{D} \liminf _{n \rightarrow \infty}\left(g_{n}-f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int_{D}\left(g_{n}-f_{n}\right) d \mu \\
& \int_{D} \lim _{n \rightarrow \infty}\left(g_{n}-f_{n}\right) d \mu \leq \lim _{n \rightarrow \infty} \int_{D} g_{n} d \mu-\limsup _{n \rightarrow \infty} \int_{D} f_{n} d \mu \\
& \int_{D} g d \mu-\int_{D} f d \mu \leq \int_{D} g d \mu-\limsup _{n \rightarrow \infty} \int_{D} f_{n} d \mu \\
& \left.\int_{D} f d \mu \geq \limsup _{n \rightarrow \infty} \int_{D} f_{n} d \mu . \quad(*) \quad \text { since } \int_{D} g d \mu<\infty\right) .
\end{aligned}
$$

Using the same process for the sequence $\left(g_{n}+f_{n}\right)$, we have

$$
\int_{D} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{D} f_{n} d \mu .(* *) .
$$

From $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we obtain

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu
$$

The fact that f is integrable comes from g_{n} is integrable:

$$
\begin{aligned}
\left|f_{n}\right| \leq g_{n} & \Rightarrow \int_{D} f_{n} d \mu \leq \int_{D} g_{n} d \mu<\infty \\
& \Rightarrow \int_{D} f d \mu<\infty
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 72

Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f be extended real-valued \mathcal{A}-measurable and integrabe functions on $D \in \mathcal{A}$. Suppose that

$$
\lim _{n \rightarrow \infty} f_{n}=f \text { a.e. on } D .
$$

(a) Show that if $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu=\int_{D}|f| d \mu$, then $\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu$.
(b) Show that the converse of (a) is false by constructing a counter example.

Solution

(a) We will use Problem 71 for

$$
g_{n}=2\left(\left|f_{n}\right|+\left|g_{n}\right|\right) \text { and } h_{n}=\left|f_{n}-f\right|+\left|f_{n}\right|-|f|, \quad n \in \mathbb{N}
$$

We have

$$
\begin{aligned}
& h_{n} \rightarrow 0 \text { a.e. on } D \\
& g_{n} \rightarrow 4|f| \text { a.e. on } D \\
& \left|h_{n}\right|=h_{n} \leq 2\left|f_{n}\right| \leq g_{n}, \\
& \lim _{n \rightarrow \infty} \int_{D} g_{n} d \mu=2 \lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu+2 \int_{D}|f| d \mu=\int_{D} 4|f| d \mu .
\end{aligned}
$$

So all conditions of Problem 71 are satisfied. Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{D} h_{n} d \mu=\int_{D} h d \mu=0 \quad(h=0) \\
& \lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu+\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu-\int_{D}|f| d \mu=0 .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu-\int_{D}|f| d \mu=0$ by assumption, we have

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

This implies that

$$
\lim _{n \rightarrow \infty}\left|\int_{D} f_{n} d \mu-\int_{D} f d \mu\right|=0
$$

Hence, $\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu$.
(b) We will give an example showing that it is not true that

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu \Rightarrow \lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu=\int_{D}|f| d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

88

$$
f_{n}(x)= \begin{cases}n & \text { if } 0 \leq x<\frac{1}{n} \\ 0 & \text { if } \frac{1}{n} \leq x \leq 1-\frac{1}{n} \\ -n & \text { if } 1-\frac{1}{n}<x \leq 1\end{cases}
$$

And so

$$
\left|f_{n}\right|(x)= \begin{cases}n & \text { if } 0 \leq x<\frac{1}{n} \text { or } 1-\frac{1}{n}<x \leq 1 \\ 0 & \text { if } \frac{1}{n} \leq x \leq 1-\frac{1}{n}\end{cases}
$$

Then we have

$$
f_{n} \rightarrow 0 \equiv 0 \text { and } \int_{[0,1]} f_{n} d \mu=0 \rightarrow 0=\int_{[0,1]} 0 d \mu
$$

while

$$
\int_{[0,1]}\left|f_{n}\right| d \mu=2 \rightarrow 2 \neq 0
$$

Problem 73

Given a measure space (X, \mathcal{A}, μ).
(a) Show that an extended real-valued integrable function is finite a.e. on X.
(b) If $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable functions defined on X such that $\sum_{n \in \mathbb{N}} \int_{X}\left|f_{n}\right| d \mu<\infty$, then show that $\sum_{n \in \mathbb{N}} f_{n}$ converges a.e. to an integrable function f and

$$
\int_{X} \sum_{n \in \mathbb{N}} f_{n} d \mu=\int_{X} f d \mu=\sum_{n \in \mathbb{N}} \int_{X} f_{n} d \mu
$$

Solution

(a) Let $E=\{X:|f|=\infty\}$. We want to show that $\mu(E)=0$. Assume that $\mu(E)>0$. Since f is integrable

$$
\infty>\int_{X}|f| d \mu \geq \int_{E}|f| d \mu=\infty
$$

This is a contradiction. Thus, $\mu(E)=0$.
(b) First we note that $\sum_{n=1}^{N}\left|f_{n}\right|$ is measurable since f_{n} is measurable for $n \in \mathbb{N}$. Hence,

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|f_{n}\right|=\sum_{n=1}^{\infty}\left|f_{n}\right|
$$

www.MATHVN.com - Anh Quang Le, PhD

is measurable. Recall that (for nonnegative measurable functions)

$$
\int_{X} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu
$$

By assumption,

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

hence,

$$
\int_{X} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu<\infty
$$

Since $\sum_{n=1}^{\infty}\left|f_{n}\right|$ is integrable on X, by part (a), it is finite a.e. on X. Define a function f as follows:

$$
f(x)= \begin{cases}\sum_{n=1}^{\infty} f_{n} & \text { where } \sum_{n=1}^{\infty}\left|f_{n}\right|<\infty \\ 0 & \text { otherwise }\end{cases}
$$

So f is everywhere defined and $f=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}$ a.e. Hence, f is measurable on X. Moreover,

$$
\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu=\int_{X}\left|\sum_{n=1}^{\infty} f_{n}\right| d \mu \leq \int_{X} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu<\infty
$$

Thus, f is integrable and $h_{N}=\sum_{n=1}^{N} f_{n}$ converges to f a.e. and

$$
\left|h_{N}\right| \leq \sum_{n=1}^{N}\left|f_{n}\right| \leq \sum_{n=1}^{\infty}\left|f_{n}\right|
$$

which is integrable. By the D.C.T. we have

$$
\begin{aligned}
\int_{X} f d \mu=\int_{X} \lim _{N \rightarrow \infty} h_{N} d \mu & =\lim _{N \rightarrow \infty} \int_{X} h_{N} \\
& =\lim _{N \rightarrow \infty} \int_{X} \sum_{n=1}^{N} f_{n} d \mu=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X} f_{n} d \mu \\
& =\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 74

Let f be a real-valued Lebesgue measurable function on $[0, \infty)$ such that

1. f is Lebesgue integrable on every finite subinterval of $[0, \infty)$.
2. $\lim _{x \rightarrow \infty} f(x)=c \in \mathbb{R}$.

Show that

$$
\lim _{a \rightarrow \infty} \frac{1}{a} \int_{[0, a]} f d \mu_{L}=c
$$

Solution

By assumption 2. we can write

$$
\text { (*) } \forall \varepsilon>0, \exists N: x>N \Rightarrow|f(x)-c|<\varepsilon .
$$

Now, for $a>N$ we have

$$
\begin{aligned}
\left|\frac{1}{a} \int_{[0, a]} f d \mu_{L}-c\right| & =\left|\frac{1}{a} \int_{[0, a]}(f-c) d \mu_{L}\right| \\
& \leq \frac{1}{a} \int_{[0, a]}|f-c| d \mu_{L} \\
& =\frac{1}{a}\left(\int_{[0, N]}|f-c| d \mu_{L}+\int_{[N, a]}|f-c| d \mu_{L}\right) .
\end{aligned}
$$

By (*) we have

$$
x \in[N, a] \Rightarrow|f(x)-c|<\varepsilon .
$$

Therefore,

$$
(* *) \quad\left|\frac{1}{a} \int_{[0, a]} f d \mu_{L}-c\right| \leq \frac{1}{a} \int_{[0, N]}|f-c| d \mu_{L}+\frac{(a-N)}{a} \varepsilon
$$

It is evident that

$$
\lim _{a \rightarrow \infty} \frac{(a-N)}{a} \varepsilon=\varepsilon
$$

By assumption $1 .,|f-c|$ is integrable on $[0, N]$, so $\int_{[0, N]}|f-c| d \mu_{L}$ is finite and does not depend on a. Hence

$$
\lim _{a \rightarrow \infty} \frac{1}{a} \int_{[0, N]}|f-c| d \mu_{L}=0
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus, we can rewrite $\left({ }^{* *}\right)$ as

$$
\lim _{a \rightarrow \infty}\left|\frac{1}{a} \int_{[0, a]} f d \mu_{L}-c\right| \leq \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, this implies that

$$
\lim _{a \rightarrow \infty}\left|\frac{1}{a} \int_{[0, a]} f d \mu_{L}-c\right|=0
$$

Problem 75

Let f be a non-negative real-valued Lebesgue measurable on \mathbb{R}. Show that if $\sum_{n=1}^{\infty} f(x+n)$ is Lebesgue integrable on \mathbb{R}, then $f=0$ a.e. on \mathbb{R}.

Solution

Recall these two facts:

1. If $f_{n} \geq 0$ is measurable on D then $\int_{D}\left(\sum_{n=1}^{\infty} f_{n}\right) d \mu=\sum_{n=1}^{\infty} \int_{D} f_{n} d \mu$.
2. If f is defined and measurable on \mathbb{R} then $\int_{\mathbb{R}} f(x+h) d \mu=\int_{\mathbb{R}} f(x) d \mu$.

From these two facts we have

$$
\begin{aligned}
\int_{\mathbb{R}}\left(\sum_{n=1}^{\infty} f(x+n)\right) d \mu_{L} & =\sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x+n) d \mu_{L} \\
& =\sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x) d \mu_{L}
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} f(x+n)$ is Lebesgue integrable on \mathbb{R},

$$
\int_{\mathbb{R}}\left(\sum_{n=1}^{\infty} f(x+n)\right) d \mu_{L}<\infty .
$$

Therefore,

$$
(*) \quad \sum_{n=1}^{\infty} \int_{\mathbb{R}} f(x) d \mu_{L}<\infty .
$$

Since $\int_{\mathbb{R}} f(x) d \mu_{L} \geq 0,\left(^{*}\right)$ implies that $\int_{\mathbb{R}} f(x) d \mu_{L}=0$. Thus, $f=0$ a.e. on \mathbb{R}.

www.MATHVN.com - Anh Quang Le, PhD

Problem 76

Show that the Lebesgue Dominated Convergence Theorem holds if a.e. convergence is replaced by convergence in measure.

Solution

We state the theorem:
Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of extended realvalued \mathcal{A}-measurable functions on $D \in \mathcal{A}$ such that $\left|f_{n}\right| \leq g$ on D for every $n \in \mathbb{N}$ for some integrable non-negative extended real-valued \mathcal{A}-measurable function g on D. If $f_{n} \xrightarrow{\mu} f$ on D, then f is integrable on D and

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu
$$

Proof:
Let $\left(f_{n_{k}}\right)$ be any subsequence of $\left(f_{n}\right)$. Then $f_{n_{k}} \xrightarrow{\mu} f$ since $f_{n} \xrightarrow{\mu} f$. By Riesz theorem, there exists a subsequence $\left(f_{n_{k_{l}}}\right)$ of $\left(f_{n_{k}}\right)$ such that $f_{n_{k_{l}}} \rightarrow f$ a.e. on D. And we have also $\left|f_{n_{k_{l}}}\right| \leq g$ on D. By the Lebesgue D.C.T. we have

$$
(*) \quad \int_{D} f d \mu=\lim _{l \rightarrow \infty} \int_{D} f_{n_{k_{l}}} d \mu .
$$

Let $a_{n}=\int_{D} f_{n} d \mu$ and $a=\int_{D} f d \mu$. Then $\left(^{*}\right)$ can be written as

$$
\lim _{l \rightarrow \infty} a_{n_{k_{l}}}=a
$$

Hence we can say that any subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ has a subsequence $\left(a_{n_{k_{l}}}\right)$ converging to a. Thus, the original sequence, namely $\left(a_{n}\right)$, converges to the same limit (See Problem 51): $\lim _{n \rightarrow \infty} a_{n}=a$. That is,

$$
\lim _{n \rightarrow \infty} \int_{D} f_{n} d \mu=\int_{D} f d \mu
$$

Problem 77

Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f be extended real-valued measurable and integrable functions on $D \in \mathcal{A}$.
Suppose that $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0$. Show that
(a) $f_{n} \xrightarrow{\mu} f$ on D.
(b) $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu=\int_{D}|f| d \mu$.

www.MATHVN.com - Anh Quang Le, PhD

Solution

(a) Given any $\varepsilon>0$, for each $n \in \mathbb{N}$, let $E_{n}=\left\{D:\left|f_{n}-f\right| \geq \varepsilon\right\}$. Then

$$
\int_{D}\left|f_{n}-f\right| d \mu \geq \int_{E_{n}}\left|f_{n}-f\right| d \mu \geq \varepsilon \mu\left(E_{n}\right)
$$

Since $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0, \quad \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$. That is $f_{n} \xrightarrow{\mu} f$ on D.
(b) Since f_{n} and f are integrable

$$
\int_{D}\left(\left|f_{n}\right|-|f|\right) d \mu=\int_{D}\left|f_{n}\right| d \mu-\int_{D}|f| d \mu \leq \int_{D}\left|f_{n}-f\right| d \mu
$$

By this and the assumption, we get

$$
\lim _{n \rightarrow \infty}\left(\int_{D}\left|f_{n}\right| d \mu-\int_{D}|f| d \mu\right) \leq \lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

This implies

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu=\int_{D}|f| d \mu
$$

Problem 78

Given a measure space (X, \mathcal{A}, μ). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ and f be extended real-valued measurable and integrable functions on $D \in \mathcal{A}$. Assume that $f_{n} \rightarrow f$ a.e. on D and $\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu=\int_{D}|f| d \mu$. Show that

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

Solution

For each $n \in \mathbb{N}$, let $h_{n}=\left|f_{n}\right|+|f|-\left|f_{n}-f\right|$. Then $h_{n} \geq 0$ for all $n \in \mathbb{N}$. Since $f_{n} \rightarrow f$ a.e. on $D, \quad h_{n} \rightarrow 2|f|$ a.e on D. By Fatou's lemma,

$$
\begin{aligned}
2 \int_{D}|f| d \mu & \leq \liminf _{n \rightarrow \infty} \int_{D}\left(\left|f_{n}\right|+|f|\right) d \mu-\limsup _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu \\
& =\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu+\lim _{n \rightarrow \infty} \int_{D}|f| d \mu-\limsup _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu \\
& =2 \int_{D}|f| d \mu-\limsup _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $|f|$ is integrable, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu \leq 0 . \tag{i}
\end{equation*}
$$

Now for each $n \in \mathbb{N}$, let $g_{n}=\left|f_{n}-f\right|-\left(\left|f_{n}\right|-|f|\right)$. Then $h_{n} \geq 0$ for all $n \in \mathbb{N}$. Since $f_{n} \rightarrow f$ a.e. on $D, \quad g_{n} \rightarrow 0$ a.e on D. By Fatou's lemma,

$$
\begin{aligned}
0=\lim _{n \rightarrow \infty} \int_{D} g_{n} d \mu & \leq \liminf _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu-\limsup _{n \rightarrow \infty} \int_{D}\left(\left|f_{n}\right|-|f|\right) d \mu \\
& \leq \liminf _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu \underbrace{\left.-\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}\right| d \mu+\lim _{n \rightarrow \infty} \int_{D}|f| d \mu\right)}_{=0}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu \geq 0 \tag{ii}
\end{equation*}
$$

From (i) and (ii) it follows that

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}-f\right| d \mu=0
$$

Problem 79

Let $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$ be the Lebesgue space. Let f be an extended real-valued Lebesgue measurable function on \mathbb{R}. Show that if f is integrable on \mathbb{R} then

$$
\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| d x=0
$$

Solution

Since f is integrable,

$$
\lim _{M \rightarrow \infty}\left(\int_{-\infty}^{-M}|f| d x+\int_{M}^{\infty}|f| d x\right)=0 \text { for } M \in \mathbb{R}
$$

Given any $\varepsilon>0$, we can pick an $M>0$ such that

$$
\int_{-\infty}^{-M}|f| d x+\int_{M}^{\infty}|f| d x<\frac{\varepsilon}{4}
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $C_{c}(\mathbb{R})$ is dense in $L^{1}(\mathbb{R})$, we can find a continuous function φ vanishing outside $[-M, M]$ such that

$$
\int_{-M}^{M}|f-\varphi| d x<\frac{\varepsilon}{4}
$$

Then we have

$$
\begin{aligned}
\|f-\varphi\|_{1} & :=\int_{\mathbb{R}}|f-\varphi| d x \\
& =\int_{-M}^{M}|f-\varphi| d x+\int_{-\infty}^{-M}|f| d x+\int_{M}^{\infty}|f| d x \\
& <\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\frac{\varepsilon}{2} .
\end{aligned}
$$

(Recall: $\varphi=0$ outside $[-M, M]$). Now for any $h \in \mathbb{R}$ we have

$$
\|f(x+h)-f(x)\|_{1} \leq\|f(x)-\varphi(x)\|_{1}+\|\varphi(x)-\varphi(x+h)\|_{1}+\|\varphi(x+h)-f(x+h)\|_{1} .
$$

Because of $\varphi \in C_{c}(\mathbb{R})$ and translation invariance, we have

$$
\lim _{h \rightarrow 0}\|\varphi(x)-\varphi(x+h)\|_{1}=0 \text { and }\|\varphi(x+h)-f(x+h)\|_{1}=\|f(x)-\varphi(x)\|_{1}
$$

It follows that

$$
\begin{aligned}
\lim _{h \rightarrow 0}\|f(x+h)-f(x)\|_{1} & \leq\|f-\varphi\|_{1}+\lim _{h \rightarrow 0}\|\varphi(x)-\varphi(x+h)\|_{1}+\|f-\varphi\|_{1} \\
& \leq 2 \frac{\varepsilon}{2}+0=\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\lim _{h \rightarrow 0}\|f(x+h)-f(x)\|_{1}=\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| d x=0 .
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 8

Signed Measures and Radon-Nikodym Theorem

1. Signed measure

Definition 21 (Signed measure)
A signed measure on a measurable space (X, \mathcal{A}) is a function $\lambda: \mathcal{A} \rightarrow[-\infty, \infty]$ such that:
(1) $\lambda(\varnothing)=0$.
(2) λ assumes at most one of the values $\pm \infty$.
(3) λ is countably additive. That is, if $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{A}$ is disjoint, then

$$
\lambda\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\sum_{n \in \mathbb{N}} \lambda\left(E_{n}\right)
$$

Definition 22 (Positive, negative, null sets)
Let $(X, \mathcal{A}, \lambda)$ be a signed measure space. A set $E \in \mathcal{A}$ is said to be positive (negative, null) for the signed measure λ if

$$
F \in \mathcal{A}, F \subset E \Longrightarrow \lambda(F) \geq 0(\leq 0,=0)
$$

Proposition 21 (Continuity)
Let $(X, \mathcal{A}, \lambda)$ be a signed measure space.

1. If $\left(E_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ is an increasing sequence then

$$
\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\lambda\left(\lim _{n \rightarrow \infty} E_{n}\right)
$$

2. If $\left(E_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ is an decreasing sequence and $\lambda\left(E_{1}\right)<\infty$, then

$$
\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(\bigcap_{n \in \mathbb{N}} E_{n}\right)=\lambda\left(\lim _{n \rightarrow \infty} E_{n}\right)
$$

www.MATHVN.com - Anh Quang Le, PhD

98 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Proposition 22 (Some more properties)
Let $(X, \mathcal{A}, \lambda)$ be a signed measure space.

1. Every measurable subset of a positive (negative, null) set is a positive (negative, null) set.
2. If E is a positive set and F is a negative set, then $E \cap F$ is a null set.
3. Union of positive (negative, null) sets is a positive (negative, null) set.

Theorem 10 (Hahn decomposition theorem)
Let $(X, \mathcal{A}, \lambda)$ be a signed measure space. Then there is a positive set A and a negative set B such that

$$
A \cap B=\varnothing \quad \text { and } \quad A \cup B=X
$$

Moreover, if A^{\prime} and B^{\prime} are another pair, then $A \triangle A^{\prime}$ and $B \triangle B^{\prime}$ are null sets. $\{A, B\}$ is called a Hahn decomposition of $(X, \mathcal{A}, \lambda)$.

Definition 23 (Singularity)
Two signed measure λ_{1} and λ_{2} on a measurable space (X, \mathcal{A}) are said to be mutually singular and we write $\lambda_{1} \perp \lambda_{2}$ if there exist two set $E, F \in \mathcal{A}$ such that $E \cap F=\varnothing, E \cup F=X, E$ is a null set for λ_{1} and F is a null set for λ_{2}.

Definition 24 (Jordan decomposition)
Given a signed measure space $(X, \mathcal{A}, \lambda)$. If there exist two positive measures μ and ν, at least one of which is finite, on the measurable (X, \mathcal{A}) such that

$$
\mu \perp \nu \quad \text { and } \quad \lambda=\mu-\nu
$$

then $\{\mu, \nu\}$ is called a Jordan decomposition of λ.

Theorem 11 (Jordan decomposition of signed measures)
Given a signed measure space $(X, \mathcal{A}, \lambda)$. A Jordan decomposition for $(X, \mathcal{A}, \lambda)$ exists and unique, that is, there exist a unique pair $\{\mu, \nu\}$ of positive measures on (X, \mathcal{A}), at least one of which is finite, such that $\mu \perp \nu$ and $\lambda=\mu-\nu$.
Moreover, with any arbitrary Hahn decomposition $\{A, B\}$ of $(X, \mathcal{A}, \lambda)$, if we define two set functions μ and ν by setting

$$
\mu(E)=\lambda(E \cap A) \quad \text { and } \quad \nu(E)=-\lambda(E \cap B) \quad \text { for } \quad E \in \mathcal{A}
$$

then $\{\mu, \nu\}$ is a Jordan decomposition for $(X, \mathcal{A}, \lambda)$.

2. Lebesgue decomposition, Radon-Nikodym Theorm

Definition 25 (Radon-Nikodym derivative)
Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}). If there exists an extended real-valued \mathcal{A}-measurable function f on X such that

$$
\lambda(E)=\int_{E} f d \mu \text { for every } E \in \mathcal{A}
$$

then f is called a Radon-Nikodym derivative of λ with respect to μ, and we write $\frac{d \lambda}{d \mu}$ for it.

www.MATHVN.com - Anh Quang Le, PhD

Proposition 23 (Uniqueness)
Let μ be a σ-finite positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}). If two extended real-valued \mathcal{A}-measurable functions f and g are Radon-Nikodym derivatives of λ with respect to μ, then $f=g \quad \mu$-a.e. on X.

Definition 26 (Absolute continuity)
Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}). We say that λ is absolutely continuous with respect to μ and write $\lambda \ll \mu$ if

$$
\forall E \in \mathcal{A}), \mu(E)=0 \Longrightarrow \lambda(E)=0 .
$$

Definition 27 (Lebesgue decomposition)
Let μ be a positive measure and λ be a signed measure on a measurable space (X, \mathcal{A}). If there exist two signed measures λ_{a} and λ_{s} on (X, \mathcal{A}) such that

$$
\lambda_{a} \ll \mu, \quad \lambda_{s} \perp \mu \quad \text { and } \quad \lambda=\lambda_{a}+\lambda_{s}
$$

then we call $\left\{\lambda_{a}, \lambda_{s}\right\}$ a Lebesgue decomposition of λ with respect to μ. We call λ_{a} and λ_{s} the absolutely continuous part and the singular part of λ with respect to μ.

Theorem 12 (Existence of Lebesgue decomposition)
Let μ be a σ-finite positive measure and λ be a σ-finite signed measure on a measurable space (X, \mathcal{A}). Then there exist two signed measures λ_{a} and λ_{s} on (X, \mathcal{A}) such that

$$
\lambda_{a} \ll \mu, \lambda_{s} \perp \mu, \lambda=\lambda_{a}+\lambda_{s} \quad \text { and } \lambda_{a} \text { is defined by } \lambda_{a}(E)=\int_{E} f d \mu, \forall E \in \mathcal{A} \text {, }
$$

where f is an extended real-valued measurable function on X.

Theorem 13 (Radon-Nikodym theorem)
Let μ be a σ-finite positive measure and λ be a σ-finite signed measure on a measurable space (X, \mathcal{A}). If $\lambda \ll \mu$, then the Radon-Nikodym derivative of λ with respect to μ exists, that is, there exists an extended real-valued measurable function on X such that

$$
\lambda(E)=\int_{E} f d \mu, \forall E \in \mathcal{A}
$$

Problem 80

Given a signed measure space $(X, \mathcal{A}, \lambda)$. Suppose that $\{\mu, \nu\}$ is a Jordan decomposition of λ, and E and F are two measurable subsets of X such that $E \cap F=\varnothing, E \cup F=X, E$ is a null set for ν and F is a null set for ν.Show that $\{E, F\}$ is a Hahn decomposition for $(X, \mathcal{A}, \lambda)$.

www.MATHVN.com - Anh Quang Le, PhD

100 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Solution

We show that E is a positive set for λ and F is a negative set for λ. Since $\{\mu, \nu\}$ is a Jordan decomposition of λ, we have

$$
\lambda(E)=\mu(E)-\nu(E), \quad \forall E \in \mathcal{A}
$$

Let $E_{0} \in \mathcal{A}, E_{0} \subset E$. Since E is a null set for ν, E_{0} is also a null set for ν. Thus $\nu\left(E_{0}\right)=0$. Consequently, $\lambda\left(E_{0}\right)=\mu\left(E_{0}\right) \geq 0$. This shows that E is a positive set for λ.
Similarly, let $F_{0} \in \mathcal{A}, F_{0} \subset E$. Since F is a null set for μ, F_{0} is also a null set for μ. Thus $\mu\left(F_{0}\right)=0$. Consequently, $\lambda\left(F_{0}\right)=-\nu\left(F_{0}\right) \leq 0$. This shows that F is a negative set for λ.
We conclude that $\{E, F\}$ is a Hahn decomposition for $(X, \mathcal{A}, \lambda)$.

Problem 81

Consider a measure space $\left([0,2 \pi], \mathcal{M}_{L} \cap[0,2 \pi], \mu_{L}\right)$. Define a signed measure λ on this space by setting

$$
\lambda(E)=\int_{E} \sin x d \mu_{L}, \quad \text { for } \quad E \in \mathfrak{M}_{L} \cap[0,2 \pi]
$$

Let $C=\left[\frac{4}{3} \pi, \frac{5}{3} \pi\right]$. Let $\varepsilon>0$ be arbitrary given. Find a measurable set $C^{\prime} \subset C$ such that $\lambda\left(C^{\prime}\right) \geq \lambda(C)$ and $\lambda(E)>-\varepsilon$ for every measurable subset E of C^{\prime}.

Solution

Let $X=[0,2 \pi], f(x)=\sin x$. Then f is continuous on X, so f is Lebesgue $(=$ Riemann $)$ integrable on X. Given $\varepsilon>0$, let $\delta=\min \left\{\frac{\varepsilon}{2}, \frac{\pi}{3}\right\}$. Let $C^{\prime}=\left[\frac{4}{3} \pi, \frac{4}{3} \pi+\delta\right]$, then

$$
C^{\prime} \subset C \text { and } f(x)=\sin x<0, x \in C^{\prime}
$$

We have

$$
\lambda\left(C^{\prime}\right)=\int_{C^{\prime}} \sin x d \mu_{L} \geq \int_{C} \sin x d \mu_{L}=\lambda(C)
$$

Now for any $E \subset C^{\prime}$ and $E \in \mathcal{M}_{L} \cap[0,2 \pi]$, since $\mu(E) \leq \mu\left(C^{\prime}\right)$ and $f(x) \leq 0$ on C^{\prime}, we have

$$
\lambda(E)=\int_{E} \sin x d \mu_{L} \geq \int_{C^{\prime}} \sin x d \mu_{L} \geq \int_{C^{\prime}}(-1) d \mu_{L}=-\mu\left(C^{\prime}\right)=-\delta
$$

By the choice of δ, we have

$$
\delta<\frac{\varepsilon}{2} \Rightarrow-\delta>-\frac{\varepsilon}{2}>-\varepsilon
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus, for any $E \in \mathcal{M}_{L} \cap[0,2 \pi]$ with $E \subset C^{\prime}$ we have $\lambda(E)>-\varepsilon$.

Problem 82

Given a signed measure space $(X, \mathcal{A}, \lambda)$.
(a) Show that if $E \in \mathcal{A}$ and $\lambda(E)>0$, then there exists a subset $E_{0} \subset E$ which is a positive set for λ with $\lambda\left(E_{0}\right) \geq \lambda(E)$.
(b) Show that if $E \in \mathcal{A}$ and $\lambda(E)<0$, then there exists a subset $E_{0} \subset E$ which is a negative set for λ with $\lambda\left(E_{0}\right) \leq \lambda(E)$.

Solution

(a) If E is a positive set for λ then we're done (just take $E_{0}=E$).

Suppose E is a not positive set for λ. Let $\{A, B\}$ be a Hahn decomposition of $(X, \mathcal{A}, \lambda)$. Let $E_{0}=E \cap A$. Since A is a positive set, so E_{0} is also a positive set (for $\left.E_{0} \subset A\right)$. Moreover,

$$
\lambda(E)=\lambda(E \cap A)+\lambda(E \cap B)=\lambda\left(E_{0}\right)+\lambda(E \cap B)
$$

Since $\lambda(E \cap B) \leq 0, \quad 0<\lambda(E) \leq \lambda\left(E_{0}\right)$. Thus, $E_{0}=E \cap A$ is the desired set.
(b) Similar argument. Answer: $E_{0}=E \cap B$.

Problem 83

Let μ and ν two positive measures on a measurable space (X, \mathcal{A}). Suppose for every $\varepsilon>0$, there exists $E \in \mathcal{A}$ such that $\mu(E)<\varepsilon$ and $\nu\left(E^{c}\right)<\varepsilon$. Show that $\mu \perp \nu$.

Solution

Recall: For positive measures μ and ν

$$
\mu \perp \nu \Leftrightarrow \exists A \in \mathcal{A}: \mu(A)=0 \text { and } \nu\left(A^{c}\right)=0 .
$$

By hypothesis, for every $n \in \mathbb{N}$, there exists $E_{n} \in \mathcal{A}$ such that

$$
\mu\left(E_{n}\right)<\frac{1}{n^{2}} \text { and } \nu\left(E_{n}^{c}\right)<\frac{1}{n^{2}}
$$

Hence,

$$
\sum_{n \in \mathbb{N}} \mu\left(E_{n}\right) \leq \sum_{n \in \mathbb{N}} \frac{1}{n^{2}}<\infty \quad \text { and } \quad \sum_{n \in \mathbb{N}} \nu\left(E_{n}^{c}\right) \leq \sum_{n \in \mathbb{N}} \frac{1}{n^{2}}<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

102 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

By Borel-Cantelli's lemma we get

$$
\begin{equation*}
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0 \text { and } \nu\left(\limsup _{n \rightarrow \infty} E_{n}^{c}\right)=0 \tag{*}
\end{equation*}
$$

Let $A=\lim \sup _{n \rightarrow \infty} E_{n}$. Then $\mu(A)=0$.
We claim: $A^{c}=\liminf _{n \rightarrow \infty} E_{n}^{c}$. Recall:

$$
\liminf _{n \rightarrow \infty} A_{n}=\left\{x \in X: x \in A_{n} \quad \text { for all but finitely many } n \in \mathbb{N}\right\}
$$

For every $x \in X$, for each $n \in \mathbb{N}$, we have either $x \in E_{n}$ or $x \in E_{n}^{c}$. If $x \in E_{n}$ for infinitely many n, then $x \in \lim \sup _{n \rightarrow \infty} E_{n}$ and vice versa. Otherwise, $x \in E_{n}$ for a finite numbers of n. But this is equivalent to $x \in E_{n}^{c}$ for all but finitely many n. That is $x \in \liminf _{n \rightarrow \infty} E_{n}^{c}$. Hence,

$$
\limsup _{n \rightarrow \infty} E_{n} \cup \liminf _{n \rightarrow \infty} E_{n}^{c}=X
$$

Now, if $x \in \limsup _{n \rightarrow \infty} E_{n}$ then $x \in E_{n}$ for infinitely many n, so $x \notin \liminf _{n \rightarrow \infty} E_{n}^{c}$. This shows that

$$
\limsup _{n \rightarrow \infty} E_{n} \cap \liminf _{n \rightarrow \infty} E_{n}^{c}=\emptyset
$$

Thus, $A^{c}=\liminf _{n \rightarrow \infty} E_{n}^{c}$ as required.
Last, we show that $\nu\left(A^{c}\right)=0$. Since $\liminf _{n \rightarrow \infty} E_{n}^{c} \subset \lim \sup _{n \rightarrow \infty} E_{n}^{c}$ and $\nu\left(\limsup _{n \rightarrow \infty} E_{n}^{c}\right)=$ 0 (by the first paragraph), we get

$$
\nu\left(\liminf _{n \rightarrow \infty} E_{n}^{c}\right)=\nu\left(A^{c}\right)=0
$$

From $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we obtain $\mu \perp \nu$.

Problem 84

Consider the Lebesgue measure space $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$. Let ν be the counting measure on \mathcal{M}_{L}, that is, ν is defined by setting $\nu(E)$ to be equal to the numbers of elements in $E \in \mathcal{M}_{L}$ if E is a finite set and $\nu(E)=\infty$ if E is infinite set.
(a) Show that $\mu_{L} \ll \nu$ but $\frac{d \mu_{L}}{d \nu}$ does not exist.
(b) Show that ν does not have a Lebesgue decomposition with respect to μ_{L}.

Solution

(a) Let $E \subset \mathbb{R}$ with $\nu(E)=0$. Since ν be the counting measure, $E=\emptyset$. Then $\mu_{L}(E)=\mu_{L}(\emptyset)=0$. Thus,

$$
E \subset \mathbb{R}, \nu(E)=0 \Rightarrow \mu_{L}(E)=0
$$

www.MATHVN.com - Anh Quang Le, PhD

Hence, $\mu_{L} \ll \nu$.
Suppose there exists a measurable function f such that

$$
m_{L}(E)=\int_{E} f d \nu \text { for every } E \in \mathcal{M}_{L}
$$

Take $E=\{x\}, x \in \mathbb{R}$ then we have

$$
E \in \mathcal{M}_{L}, \mu_{L}(E)=0, \quad \text { and } \quad \nu(E)=1
$$

This implies that $f \equiv 0$. Then for every $A \in \mathcal{M}_{L}$ we have

$$
\mu_{L}(A)=\int_{A} 0 d \nu=0
$$

This is impossible.
(b) Assume that ν have a Lebesgue decomposition with respect to μ_{L}. Then, for every $E \subset \mathbb{R}$ and some measurable function f,

$$
\nu=\nu_{a}+\nu_{s}, \nu_{a} \ll \mu_{L}, \nu_{s} \perp \mu_{L}, \quad \text { and } \quad \nu_{a}(E)=\int_{E} f d \mu_{L}
$$

Since $\nu_{s} \perp \mu_{L}$, there exists $A \in \mathcal{M}_{L}$ such that $\mu_{L}\left(A^{c}\right)=0$ and A is a null set for ν_{s}. Pick $a \in A$ then $\nu_{s}(\{a\})=0$. On the other hand,

$$
\nu_{a}(\{a\})=\int_{\{a\}} f d \mu_{L} \text { and } \mu_{L}(\{a\})=0
$$

It follows that $\nu_{a}(\{a\})=0$. Since $\nu=\nu_{a}+\nu_{s}$, we get

$$
1=\nu(\{a\})=\nu_{a}(\{a\})+\nu_{s}(\{a\})=0+0=0 .
$$

This is a contradiction. Thus, ν does not have a Lebesgue decomposition with respect to μ_{L}.

Problem 85

Let μ and ν be two positive measures on a measurable space (X, \mathcal{A}).
(a) Show that if for every $\varepsilon>0$ there exists $\delta>0$ such that $\nu(E)<\varepsilon$ for every $E \in \mathcal{A}$ with $\mu(E)<\delta$, then $\nu \ll \mu$.
(b) Show that if ν is a finite positive measure, then the converse of (a) holds.

Solution

(a) Suppose this statement is true: (${ }^{*}$):=for every $\varepsilon>0$ there exists $\delta>0$ such

www.MATHVN.com - Anh Quang Le, PhD

104 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM
that $\nu(E)<\varepsilon$ for every $E \in \mathcal{A}$ with $\mu(E)<\delta$.
Take $E \in \mathcal{A}$ with $\mu(E)=0$. Then

$$
\forall \varepsilon>0, \nu(E)<\varepsilon
$$

It follows that $\nu(E)=0$. Hence $\nu \ll \mu$.
(b) Suppose ν is a finite positive measure and μ is a positive measure such that $\nu \ll \mu$. We want to show $\left(^{*}\right)$ is true. Assume that $\left(^{*}\right)$ is false. that is

$$
\exists \varepsilon>0 \text { st }[\forall \delta>0, \exists E \in \mathcal{A} \text { st }\{\mu(E)<\delta \text { and } \nu(E) \geq \varepsilon\}]
$$

In particular,

$$
\exists \varepsilon>0 \text { st }\left[\forall n \in \mathbb{N}, \exists E_{n} \in \mathcal{A} \text { st }\left\{\mu\left(E_{n}\right)<\frac{1}{n^{2}} \text { and } \nu\left(E_{n}\right) \geq \varepsilon\right\}\right]
$$

Since $\sum_{n \in \mathbb{N}} \mu\left(E_{n}\right) \leq \sum_{n \in \mathbb{N}} \frac{1}{n^{2}}<\infty$, by Borel-Catelli lemma, we have

$$
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0 .
$$

Set $E=\limsup \sup _{n \rightarrow \infty} E_{n}$, then $\mu(E)=0$. Since $\nu \ll \mu, \nu(E)=0$. Note that $\nu(X)<\infty$, we have

$$
\nu(E)=\nu\left(\limsup _{n \rightarrow \infty} E_{n}\right) \geq \limsup _{n \rightarrow \infty} \nu\left(E_{n}\right) \geq \nu\left(E_{n}\right) \geq \varepsilon
$$

This is a contradiction. Thus, $\left({ }^{*}\right)$ must be true.

Problem 86

Let μ and ν be two positive measures on a measurable space (X, \mathcal{A}). Suppose $\frac{d \nu}{d \mu}$ exists so that $\nu \ll \mu$.
(a) Show that if $\frac{d \nu}{d \mu}>0, \mu$-a.e. on X, then $\mu \ll \nu$ and thus, $\mu \sim \nu$.
(b) Show that if $\frac{d \nu}{d \mu}>0, \mu$-a.e. on X and if μ and ν are σ-finite, then $\frac{d \mu}{d \nu}$ exists and

$$
\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}, \quad \mu-a . e . \text { and } \nu-\text { a.e. on } X .
$$

Solution

(a) For every $E \in \mathcal{A}$, by definition, we have

$$
\nu(E)=\int_{E} \frac{d \nu}{d \mu} d \mu
$$

www.MATHVN.com - Anh Quang Le, PhD

Suppose $\nu(E)=0$. Since $\frac{d \nu}{d \mu}>0, \mu$-a.e. on X, we have

$$
\int_{E} \frac{d \nu}{d \mu} d \mu=0
$$

Hence, $\mu(E)=0$. This implies that $\mu \ll \nu$ and so $\mu \sim \nu$ (since $\nu \ll \mu$ is given).
(b) Suppose $\frac{d \nu}{d \mu}>0, \mu$-a.e. on X and if μ and ν are σ-finite. The existence of $\frac{d \mu}{d \nu}$ is guaranteed by the Radon-Nikodym theorem (since $\mu \sim \nu$ by part a). Moreover,

$$
\frac{d \mu}{d \nu}>0, \quad \nu-a . e . \text { on } X .
$$

By the chain rule,

$$
\begin{aligned}
& \frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \mu}=\frac{d \mu}{d \mu}=1, \quad \mu-a . e . \text { on } X . \\
& \frac{d \nu}{d \mu} \cdot \frac{d \mu}{d \nu}=\frac{d \nu}{d \nu}=1, \quad \nu-a . e . \text { on } X .
\end{aligned}
$$

Thus,

$$
\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}, \quad \mu-a . e . \text { and } \nu-a . e . \text { on } X
$$

Problem 87

Let (X, \mathcal{A}, μ) be a measure space. Assume that there exists a measurable function $f: X \rightarrow(0, \infty)$ satisfying the condition that $\mu\{x \in X: f(x) \leq n\}<\infty$ for every $n \in \mathbb{N}$.
(a) Show that the existence of such a function f implies that μ is a σ-finite measure.
(b) Define a positive measure ν on \mathcal{A} by setting

$$
\nu(E)=\int_{E} f d \mu \text { for } E \in \mathcal{A}
$$

Show that ν is a σ-finite measure.
(c) Show that $\frac{d \mu}{d \nu}$ exists and

$$
\frac{d \mu}{d \nu}=\frac{1}{f}, \quad \mu-a . e . \text { and } \nu-\text { a.e. on } X .
$$

www.MATHVN.com - Anh Quang Le, PhD

106 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Solution

(a)By assumption, $\mu\{x \in X: f(x) \leq n\}<\infty$ for every $n \in \mathbb{N}$. Since $0<f<\infty$, so $\bigcup_{n=1}^{\infty}\{X: f \leq n\}=X$. Hence μ is a σ-finite measure.
(b) Let $\nu(E)=\int_{E} f d \mu$ for $E \in \mathcal{A}$.

Since $f>0, \nu$ is a positive measure and if $\mu(E)=0$ then $\nu(E)=0$. Hence $\nu \ll \mu$. Conversely, if $\nu(E)=0$, since $f>0, \mu(E)=0$. So $\mu \ll \nu$. Thus, $\mu \sim \nu$. Since μ is σ-finite (by (a)), ν is also σ-finite.
(c) Since ν is σ-finite, $\frac{d \mu}{d \nu}$ exists. By part (b), $f=\frac{d \nu}{d \mu}$. By chain rule,

$$
\frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \mu}=1, \quad \mu-a . e . \text { and } \nu-a . e . \text { on } X .
$$

Thus,

$$
\frac{d \mu}{d \nu}=\frac{1}{f}, \mu-a . e . \text { and } \nu-a . e . \text { on } X .
$$

Problem 88

Let μ and ν be σ-finite positive measures on (X, \mathcal{A}). Show that there exist $A, B \in$ \mathcal{A} such that

$$
A \cap B=\varnothing, A \cap B=X, \mu \sim \nu \quad \text { on }(A, \mathcal{A} \cap A) \quad \text { and } \mu \perp \nu \quad \text { on } \quad(B, \mathcal{A} \cap B)
$$

Solution

Define a σ-finite measure $\lambda=\mu+\nu$. Then $\mu \ll \lambda$ and $\nu \ll \lambda$. By the RadonNikodym theorem there exist non-negative \mathcal{A}-measurable functions f and g such that for every $E \in \mathcal{A}$,

$$
\mu(E)=\int_{E} f d \lambda \text { and } \nu(E)=\int_{E} g d \lambda .
$$

Let $A=\{x \in X: f(x) g(x)>0\}$ and $B=A^{c}$. Then $\mu \sim \nu$. Indeed, $f>0$ in A. Thus, if $\mu(E)=0$, then $\lambda(E)=0$, and therefore, $\nu(E)=0$. This implies $\nu \ll \mu$. We can prove $\mu \ll \nu$ in the same manner. Hence, $\mu \sim \nu$.
Let $C=\{x \in B: f(x)=0\}, \quad D=B \backslash C$. For any measurable sets $E \subset C$ and $F \subset D, \quad \mu(E)=\nu(F)=0$. Thus, $\mu \perp \nu$ on $(B, \mathcal{A} \cap B)$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 89

Let μ and ν be σ-finite positive measures on (X, \mathcal{A}). Show that there exists a non-negative extended real-valued \mathcal{A}-measurable function φ on X and a set $A_{0} \in \mathcal{A}$ with $\mu\left(A_{0}\right)=0$ such that

$$
\nu(E)=\int_{E} \varphi d \mu+\nu\left(E \cap A_{0}\right) \text { for every } E \in \mathcal{A}
$$

Solution

By the Lebesgue decomposition theorem,

$$
\nu=\nu_{a}+\nu_{s}, \nu_{a} \ll \mu, \nu_{s} \perp \mu \text { and } \nu_{a}(E)=\int_{E} \varphi d \mu \text { for any } E \in \mathcal{A}
$$

where φ is a non-negative extended real-valued \mathcal{A}-measurable function on X.
Now since $\nu_{s} \perp \mu$, there exists $A_{0} \in \mathcal{A}$ such that

$$
\mu\left(A_{0}\right)=0 \text { and } \nu_{s}\left(A_{0}^{c}\right)=0
$$

Hence

$$
\left[\nu_{a} \ll \mu \text { and } \mu\left(A_{0}\right)=0\right] \Longrightarrow \nu_{a}\left(A_{0}\right)=0 . \quad(*)
$$

On the other hand, since $\nu_{s}(E)=\nu_{s}\left(E \cap A_{0}\right)$ for every $E \in \mathcal{A}$, so we have

$$
\nu\left(E \cap A_{0}\right)=\underbrace{\nu_{a}\left(E \cap A_{0}\right)}_{=0 \text { by }(*)}+\nu_{s}\left(E \cap A_{0}\right)=\nu_{s}\left(E \cap A_{0}\right)=\nu_{s}(E) .
$$

Finally,

$$
\nu(E)=\nu_{a}(E)+\nu_{s}(E)=\int_{E} \varphi d \mu+\nu\left(E \cap A_{0}\right) \text { for every } E \in \mathcal{A}
$$

www.MATHVN.com - Anh Quang Le, PhD

108 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

www.MATHVN.com - Anh Quang Le, PhD

Chapter 9

Differentiation and Integration

The measure space in this chapter is the space $\left(\mathbb{R}, \mathcal{M}_{L}, \mu_{L}\right)$. Therefore, we write μ instead of μ_{L} for the Lebesgue measure. Also, we say f is integrable (derivable) instead of f is μ_{L}-integrable (derivable).

1. BV functions and absolutely continuous functions

Definition 28 (Variation of f)
Let $[a, b] \subset \mathbb{R}$ with $a<b$. A partition of $[a, b]$ is a finite ordered set $\mathcal{P}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=\right.$ $b\}$. For a real-valued function f on $[a, b]$ we define the variation of f corresponding to a partition \mathcal{P} by

$$
V_{a}^{b}(f, \mathcal{P}):=\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \in[0, \infty) .
$$

We define the total variation of f on $[a, b]$ by

$$
V_{a}^{b}(f):=\sup _{\mathcal{P}} V_{a}^{b}(f, \mathcal{P}) \in[0, \infty],
$$

where the supremum is taken over all partitions of $[a, b]$. We say that f is a function of bounded variation on $[a, b]$, or simply a $B V$ function, if $V_{a}^{b}(f)<\infty$.
We write $B V([a, b])$ for the collection of all $B V$ functions on $[a, b]$.

Theorem 14 (Jordan decomposition of a $B V$ function)

1. A function f is a $B V$ function on $[a, b]$ if and only if there are two real-valued increasing functions g_{1} and g_{2} on $[a, b]$ such that $f=g_{1}-g_{2}$ on $[a, b]$.
$\left\{g_{1}, g_{2}\right\}$ is called a Jordan decomposition of f.
2. If a $B V$ function on $[a, b]$ is continuous on $[a, b]$, then g_{1} and g_{2} can be chosen to be continuous on $[a, b]$.

Theorem 15 (Derivability and integrability)
If f is a $B V$ function on $[a, b]$, then f^{\prime} exists a.e. on $[a, b]$ and integrable on $[a, b]$.

www.MATHVN.com - Anh Quang Le, PhD

Definition 29 (Absolutely continuous functions)
A real-valued function f on $[a, b]$ is said to be absolutely continuous on $[a, b]$ if, given any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon
$$

for every finite collection $\left\{\left[a_{k}, b_{k}\right]\right\}_{1 \leq k \leq n}$ of non-overlapping intervals contained in $[a, b]$ with

$$
\sum_{k=1}^{n}\left|b_{k}-a_{k}\right|<\delta
$$

Theorem 16 (Properties)
If f is an absolutely continuous on $[a, b]$ then

1. f is uniformly continuous on $[a, b]$,
2. f is a $B V$ function on $[a, b]$,
3. f^{\prime} exists a.e. on $[a, b]$,
4. f is integrable on $[a, b]$.

Definition 30 (Condition (N))
Let f be a real-valued function on $[a, b]$. We say that f satisfies Lusin's Condition (N) on $[a, b]$ if for every $E \subset[a, b]$ with $\mu_{L}(E)=0$, we have $\mu(f(E))=0$.

Theorem 17 (Banach-Zarecki criterion for absolute continuity)
Let f be a real-valued function on $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if it satisfies the following three conditions:

1. f is continuous on $[a, b]$.
2. f is of $B V$ on $[a, b]$.
3. f satisfies condition (N) on $[a, b]$.

2. Indefinite integrals and absolutely continuous functions

Definition 31 (Indefinite integrals)
Let f be a extended real-valued function on $[a, b]$. Suppose that f is measurable and integrable on $[a, b]$. By indefinite integral of f on $[a, b]$ we mean a real-valued function F on $[a, b]$ defined by

$$
F(x)=\int_{[a, x]} f d \mu+c, \quad x \in[a, b] \quad \text { and } c \in \mathbb{R} \text { is a constant. }
$$

Theorem 18 (Lebesgue differentiation theorem)
Let f be a extended real-valued, measurable and integrable function on $[a, b]$. Let F be an indefinite integral of f on $[a, b]$. Then

1. F is absolutely continuous on $[a, b]$,
2. F^{\prime} exists a.e. on $[a, b]$ and $F^{\prime}=f$ a.e. on $[a, b]$,

www.MATHVN.com - Anh Quang Le, PhD

Theorem 19 Let f be a real-valued absolutely continuous on $[a, b]$. Then

$$
\int_{[a, x]} f^{\prime} d \mu=f(x)-f(a), \forall x \in[a, b] .
$$

Thus, an absolutely continuous function is an indefinite integral of its derivative.

Theorem 20 (A characterization of an absolutely continuous function)
A real-valued function f on $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it satisfies the following conditions:
(i) f^{\prime} exists a.e. on $[a, b]$
(ii) f^{\prime} is measurable and integrable on $[a, b]$.
(iii) $\int_{[a, x]} f^{\prime} d \mu=f(x)-f(a), \forall x \in[a, b]$.

3. Indefinite integrals and BV functions

Theorem 21 (Total variation of F)
Let f be a extended real-valued measurable and integrable function on $[a, b]$. Let F be an indefinite integral of f on $[a, b]$ defined by

$$
F(x)=\int_{[a, x]} f d \mu+c, \quad x \in[a, b] .
$$

Then the total variation of F is given by

$$
V_{a}^{b}(F)=\int_{[a, b]}|f| d \mu
$$

Problem 90

Let $f \in B V([a, b])$. Show that if $f \geq c$ on $[a, b]$ for some constant $c>0$, then $\frac{1}{f} \in B V([a, b])$.

Solution

Let $\mathcal{P}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ be a partition of $[a, b]$. Then

$$
V_{a}^{b}\left(\frac{1}{f}, \mathcal{P}\right)=\sum_{k=1}^{n}\left|\frac{1}{f\left(x_{k}\right)}-\frac{1}{f\left(x_{k-1}\right)}\right|=\sum_{k=1}^{n} \frac{\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|}{\left|f\left(x_{k}\right) f\left(x_{k-1}\right)\right|} .
$$

Since $f \geq c>0$,

$$
\frac{\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|}{\mid f\left(x_{k}\right) f\left(x_{k-1} \mid\right)} \leq \frac{\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|}{c^{2}} .
$$

www.MATHVN.com - Anh Quang Le, PhD

It follows that

$$
V_{a}^{b}\left(\frac{1}{f}, \mathcal{P}\right) \leq \frac{1}{c^{2}} \sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|=\frac{1}{c^{2}} V_{a}^{b}(f, \mathcal{P}) \leq \frac{1}{c^{2}} V_{a}^{b}(f)
$$

Since $V_{a}^{b}(f)<\infty, V_{a}^{b}\left(\frac{1}{f}\right)<\infty$.

Problem 91

Let $f, g \in B V([a, b])$. Show that $f g \in B V([a, b])$ and

$$
V_{a}^{b}(f g) \leq \sup _{[a, b]}|f| \cdot V_{a}^{b}(g)+\sup _{[a, b]}|g| \cdot V_{a}^{b}(f) .
$$

Solution

Note first that $f, g \in B V([a, b])$ implies that f and g are bounded on $[a, b]$. There are some $0<M<\infty$ and $0<N<\infty$ such that

$$
M=\sup _{[a, b]}|f| \text { and } N=\sup _{[a, b]}|g|
$$

For any $x, y \in[a, b]$ we have

$$
\begin{aligned}
|f(x) g(x)-f(y) g(y)| & \leq|f(x)-f(y)||g(x)|+|g(x)-g(y)||f(y)| \\
& \leq N|f(x)-f(y)|+M|g(x)-g(y)|(*)
\end{aligned}
$$

Now, let $\mathcal{P}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ be any partition of $[a, b]$. Then we have

$$
\begin{aligned}
V_{a}^{b}(f g, \mathcal{P}) & =\sum_{k=1}^{n}\left|f\left(x_{k}\right) g\left(x_{k}\right)-f\left(x_{k-1}\right) g\left(x_{k-1}\right)\right| \\
& \leq M \sum_{k=1}^{n}\left|g\left(x_{k}\right)-g\left(x_{k-1}\right)\right|+N \sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& \leq M V_{a}^{b}(g, \mathcal{P})+N V_{a}^{b}(f, \mathcal{P})
\end{aligned}
$$

Since \mathcal{P} is arbitrary,

$$
\sup _{\mathcal{P}} V_{a}^{b}(f g, \mathcal{P}) \leq M \sup _{\mathcal{P}} V_{a}^{b}(g, \mathcal{P})+N \sup _{\mathcal{P}} V_{a}^{b}(f, \mathcal{P})
$$

where the supremum is taken over all partitions of $[a, b]$. Thus,

$$
V_{a}^{b}(f g) \leq \sup _{[a, b]}|f| \cdot V_{a}^{b}(g)+\sup _{[a, b]}|g| \cdot V_{a}^{b}(f) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 92

Let f be a real-valued function on $[a, b]$. Suppose f is continuous on $[a, b]$ and satisfying the Lipschitz condition, that is, there exists a constant $M>0$ such that

$$
\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leq M\left|x^{\prime}-x^{\prime \prime}\right|, \forall x^{\prime}, x^{\prime \prime} \in[a, b] .
$$

Show that $f \in B V([a, b])$ and $V_{a}^{b}(f) \leq M(b-a)$.

Solution

Let $\mathcal{P}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ be any partition of $[a, b]$. Then

$$
\begin{aligned}
V_{a}^{b}(f, \mathcal{P}) & =\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& \leq M \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& \leq M\left(x_{n}-x_{0}\right)=M(b-a) .
\end{aligned}
$$

This implies that

$$
V_{a}^{b}(f)=\sup _{\mathcal{P}} V_{a}^{b}(f, \mathcal{P}) \leq M(b-a)<\infty .
$$

Problem 93

Let f be a real-valued function on $[a, b]$. Suppose f is continuous on $[a, b]$ and is differentiable on (a, b) with $\left|f^{\prime}\right| \leq M$ for some constant $M>0$. Show that $f \in B V([a, b])$ and $V_{a}^{b}(f) \leq M(b-a)$.

Hint:

Show that f satisfies the Lipschitz condition.

Problem 94

Let f be a real-valued function on $\left[0, \frac{2}{\pi}\right]$ defined by

$$
f(x)= \begin{cases}\sin \frac{1}{x} & \text { for } x \in\left(0, \frac{2}{\pi}\right] \\ 0 & \text { for } x=0\end{cases}
$$

Show that $f \notin B V\left(\left[0, \frac{2}{\pi}\right]\right)$.

www.MATHVN.com - Anh Quang Le, PhD

Solution

Let us choose a particular partition of $\left[0, \frac{2}{\pi}\right]$:

$$
x_{1}=\frac{2}{\pi}>x_{2}=\frac{2}{\pi+2 \pi}>\ldots>x_{2 n-1}=\frac{2}{\pi+2 n .2 \pi}>x_{2 n}=0 .
$$

Then we have

$$
\begin{aligned}
V_{0}^{\frac{2}{\pi}}(f, \mathcal{P}) & =\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|+\left|f\left(x_{2}\right)-f\left(x_{3}\right)\right|+\ldots+\left|f\left(x_{2 n-1}\right)-f\left(x_{2 n}\right)\right| \\
& =\underbrace{2+2+\ldots+2}_{2 n-1}+1=(2 n-1) 2+1
\end{aligned}
$$

Therefore,

$$
\sup _{\mathcal{P}} V_{0}^{\frac{2}{\pi}}(f, \mathcal{P})=\infty
$$

where the supremum is taken over all partitions of $\left[0, \frac{2}{\pi}\right]$. Thus, f is not a BV function.

Problem 95

Let f be a real-valued continuous and $B V$ function on $[0,1]$. Show that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|^{2}=0
$$

Solution

Since f is continuous on $[0,1]$, which is compact, f is uniformly continuous on $[0,1]$. Hence,

$$
\forall \varepsilon>0, \exists N>0:|x-y| \leq \frac{1}{N} \Rightarrow|f(x)-f(y)| \leq \varepsilon, \forall x, y \in[0,1]
$$

Partition of $[0,1]$:

$$
x_{0}=0<x_{1}=\frac{1}{n}<x_{2}=\frac{2}{n}<\ldots<x_{n}=\frac{n}{n}=1 .
$$

For $n \geq N$ we have $\left|\frac{i}{n}-\frac{i-1}{n}\right|=\frac{1}{n} \leq \frac{1}{N}$. Hence,

$$
\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \leq \varepsilon, i=1,2, \ldots
$$

www.MATHVN.com - Anh Quang Le, PhD

Now we can write, for $n \geq N$,

$$
\begin{aligned}
\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|^{2} & =\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \cdot\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \\
& \leq \varepsilon\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|
\end{aligned}
$$

and so

$$
\sum_{i=1}^{n}\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|^{2} \leq \varepsilon \sum_{i=1}^{n}\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \leq \varepsilon V_{0}^{1}(f)
$$

Since $V_{0}^{1}(f)<\infty$, we can conclude that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|^{2}=0
$$

Problem 96

Let $\left(f_{i}: i \in \mathbb{N}\right)$ and f be real-valued functions on an interval $[a, b]$ such that $\lim _{i \rightarrow \infty} f_{i}(x)=f(x)$ for $x \in[a, b]$. Show that

$$
V_{a}^{b}(f) \leq \liminf _{i \rightarrow \infty} V_{a}^{b}\left(f_{i}\right)
$$

Solution

Let $P_{n}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ be a partition of $[a, b]$. Then

$$
\begin{aligned}
& V_{a}^{b}\left(f, P_{n}\right)=\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|, \\
& V_{a}^{b}\left(f_{i}, P_{n}\right)=\sum_{k=1}^{n}\left|f_{i}\left(x_{k}\right)-f_{i}\left(x_{k-1}\right)\right| \text { for each } i \in \mathbb{N} .
\end{aligned}
$$

Consider the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ where ν is the counting measure. Let $D=\{1,2, \ldots, n\}$. Then $D \in \mathcal{P}(\mathbb{N})$. Define

$$
\begin{aligned}
& g_{i}(k)=\left|f_{i}\left(x_{k}\right)-f_{i}\left(x_{k-1}\right)\right| \geq 0 \\
& g(k)=\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \text { for } k \in D .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $\lim _{i \rightarrow \infty} f_{i}(x)=f(x)$ for $x \in[a, b]$, we have

$$
\lim _{i \rightarrow \infty} g_{i}(k)=g(k) \text { for every } k \in D
$$

By Fatou's lemma,

$$
\begin{equation*}
\int_{D} g(k) d \nu=\int_{D} \lim _{i \rightarrow \infty} g_{i}(k) d \nu \leq \liminf _{i \rightarrow \infty} \int_{D} g_{i}(k) d \nu \tag{*}
\end{equation*}
$$

Since $D=\bigsqcup_{k=1}^{n}\{k\}$ (union of disjoint sets), we have

$$
\begin{aligned}
\int_{D} g(k) d \nu & =\sum_{k=1}^{n} \int_{\{k\}} g(k) d \nu \\
& =\sum_{k=1}^{n} g(k) \\
& =\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& =V_{a}^{b}\left(f, P_{n}\right) .
\end{aligned}
$$

Similarly, we get

$$
\int_{D} g_{i}(k) d \nu=V_{a}^{b}\left(f_{i}, P_{n}\right) \text { for each } i \in \mathbb{N} .
$$

With these, we can rewrite (*) as follows:

$$
V_{a}^{b}\left(f, P_{n}\right) \leq \liminf _{i \rightarrow \infty} V_{a}^{b}\left(f_{i}, P_{n}\right)
$$

By taking all partitions P_{n}, we obtain

$$
V_{a}^{b}(f) \leq \liminf _{i \rightarrow \infty} V_{a}^{b}\left(f_{i}\right)
$$

Problem 97

Let f be a real-valued absolutely continuous function on $[a, b]$. If f is never zero, show that $\frac{1}{f}$ is also absolutely continuous on $[a, b]$.

Solution

The function f is continuous on $[a, b]$, which is compact, so f has a minimum on it. Since f is non-zero, there is some $m \in(0, \infty)$ such that

$$
\min _{x \in[a, b]}|f(x)|=m
$$

www.MATHVN.com - Anh Quang Le, PhD

Given any $\varepsilon>0$ there exists $\delta>0$ such that for any finite family of non-overlapping closed intervals $\left\{\left[a_{i}, b_{i}\right]: i=1, \ldots, n\right\}$ in $[a, b]$ such that $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta$ we have $\sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(b_{i}\right)\right|<\varepsilon$. Now,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\frac{1}{f\left(a_{i}\right)}-\frac{1}{f\left(b_{i}\right)}\right| & =\sum_{i=1}^{n} \frac{\left|f\left(a_{i}\right)-f\left(b_{i}\right)\right|}{\left|f\left(a_{i}\right) f\left(b_{i}\right)\right|} \\
& \leq \frac{1}{m^{2}} \sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(b_{i}\right)\right| \\
& \leq \frac{\varepsilon}{m^{2}}
\end{aligned}
$$

Problem 98

Let f be a real-valued function on $[a, b]$ satisfying the Lipschitz condition on $[a, b]$. Show that f is absolutely continuous on $[a, b]$.

Solution

The Lipschitz condition on $[a, b]$:

$$
\exists K>0: \forall x, y \in[a, b],|f(x)-f(y)| \leq K|x-y|
$$

Given any $\varepsilon>0$, let $\delta=\frac{\varepsilon}{K}$. Let $\left\{\left[c_{i}, d_{i}\right]: i=1, \ldots, n\right\}$ be a family of nonoverlapping subintervals of $[a, b]$ with $\sum_{i=1}^{n}\left(d_{i}-c_{i}\right)<\delta$, then, by the Lipschitz condition, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|f\left(c_{k}\right)-f\left(d_{k}\right)\right| & \leq \sum_{i=1}^{n} K\left(d_{k}-c_{k}\right) \\
& \leq K \sum_{i=1}^{n}\left(d_{k}-c_{k}\right) \\
& <K \frac{\varepsilon}{K}=\varepsilon
\end{aligned}
$$

Thus f is absolutely continuous on $[a, b]$.

Problem 99

Show that if f is continuous on $[a, b]$ and f^{\prime} exists on (a, b) and satisfies $\left|f^{\prime}(x)\right| \leq M$ for $x \in(a, b)$ with some $M>0$, then f satisfies the Lipschitz condition and thus absolutely continuous on $[a, b]$.

www.MATHVN.com - Anh Quang Le, PhD

(Hint: Just use the Intermediate Value Theorem.)

Problem 100

Let f be a continuous function on $[a, b]$. Suppose f^{\prime} exists on (a, b) and satisfies $\left|f^{\prime}(x)\right| \leq M$ for $x \in(a, b)$ with some $M>0$. Show that for every $E \subset[a, b]$ we have

$$
\mu_{L}^{*}(f(E)) \leq M \mu_{L}^{*}(E)
$$

Solution

Recall:

$$
\mu_{L}^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right): I_{n} \text { are open intervals and } \bigcup_{n=1}^{\infty} I_{n} \supset E\right\}
$$

Let $E \subset[a, b]$. Let $\left\{I_{n}=\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right\}$ be a covering of E, where each $\left(a_{n}^{\prime}, b_{n}^{\prime}\right) \subset[a, b]$. Then

$$
E \subset \bigcup_{n}\left(a_{n}^{\prime}, b_{n}^{\prime}\right) \Rightarrow f(E) \subset \bigcup_{n} f\left(\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right)
$$

Since f is continuous, $f\left(\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right)$ must be an interval. So

$$
f\left(\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right)=\left(f\left(a_{n}\right), f\left(b_{n}\right)\right) \text { for } a_{n}, b_{n} \in\left(a_{n}^{\prime}, b_{n}^{\prime}\right)
$$

Hence,

$$
f(E) \subset \bigcup_{n}\left(f\left(a_{n}\right), f\left(b_{n}\right)\right) .
$$

Therefore $\left\{\left(f\left(a_{n}\right), f\left(b_{n}\right)\right)\right\}$ is a covering of $f(E)$. By the Mean Value Theorem,

$$
\begin{aligned}
\ell\left(\left(f\left(a_{n}\right), f\left(b_{n}\right)\right)\right) & =\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right| \\
& =\left|f^{\prime}(x)\right|\left|b_{n}-a_{n}\right|, \quad x \in\left(a_{n}, b_{n}\right) \\
& \leq M\left|b_{n}-a_{n}\right| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{n} \ell\left(\left(f\left(a_{n}\right), f\left(b_{n}\right)\right)\right) & \leq M \sum_{n}\left|b_{n}-a_{n}\right| \leq M \sum_{n}\left|b_{n}^{\prime}-a_{n}^{\prime}\right| \\
& \leq M \sum_{n} \ell\left(\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right)
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus,

$$
\inf \sum_{n} \ell\left(\left(f\left(a_{n}\right), f\left(b_{n}\right)\right)\right) \leq M \inf \sum_{n} \ell\left(\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right) .
$$

The infimum is taken over coverings of $f(E)$ and E respectively. By definition (at the very first of the proof) we have

$$
\mu_{L}^{*}(f(E)) \leq M \mu_{L}^{*}(E) .
$$

Problem 101

Let f be a real-valued function on $[a, b]$ such that f is absolutely continuous on $[a+\eta, b]$ for every $\eta \in(0, b-a)$. Show that if f is continuous and of bounded variation on $[a, b]$, then f is absolutely continuous on $[a, b]$.

Solution

Using the Banach-Zaracki theorem, to show that f is absolutely continuous on $[a, b]$, we need to show that f has property (N) on $[a, b]$. Suppose $E \subset[a, b]$ such that $\mu_{L}(E)=0$. Given any $\varepsilon>0$, since f is continuous at a^{+}, there exists $\delta \in(0, b-a)$ such that

$$
\begin{equation*}
a \leq x \leq a+\delta \Rightarrow|f(x)-f(a)|<\frac{\varepsilon}{2} \tag{*}
\end{equation*}
$$

Let $E_{1}=E \cap[a, a+\delta]$ and $E_{2}=E \backslash E_{1}$. Then $E=E_{1} \cup E_{2}$ and so $f(E)=$ $f\left(E_{1}\right) \cup f\left(E_{2}\right)$. But $E_{2} \subset[a+\delta, b)$ and f is absolutely continuous on $[a+\delta, b]$, so f has property (N) on this interval. Since $E_{2} \subset E$, we have $\mu_{L}\left(E_{2}\right)=0$. Therefore,

$$
\mu_{L}\left(f\left(E_{2}\right)\right)=0=\mu_{L}^{*}\left(f\left(E_{2}\right)\right)
$$

On the other hand,

$$
\begin{aligned}
x \in E_{1} & \Rightarrow x \in[a, a+\delta) \\
& \Rightarrow f(a)-\frac{\varepsilon}{2} \leq f(x) \leq f(a)+\frac{\varepsilon}{2} \text { by }(*) \\
& \Rightarrow f\left(E_{1}\right) \subset\left[f(a)-\frac{\varepsilon}{2}, f(a)+\frac{\varepsilon}{2}\right] \\
& \Rightarrow \mu_{L}^{*}\left(f\left(E_{1}\right)\right) \leq \varepsilon .
\end{aligned}
$$

Thus,

$$
\mu_{L}^{*}(f(E)) \leq \mu_{L}^{*}\left(f\left(E_{1}\right)\right)+\mu_{L}^{*}\left(f\left(E_{2}\right)\right) \leq \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, $\mu_{L}^{*}(f(E))=0$ and so $\mu_{L}(f(E))=0$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 102
Let f be a real-valued integrable function on $[a, b]$. Let

$$
F(x)=\int_{[a, x]} f d \mu_{L}, \quad x \in[a, b] .
$$

Show that F is continuous and of bounded variation on $[a, b]$.

Solution

The continuity follows from Theorem 18 (absolute continuity implies continuity).
To show that F is of BV on $[a, b]$, let $a=x_{0}<x_{1}<\ldots<x_{n}=b$ be any partition of $[a, b]$. Then

$$
\begin{aligned}
\sum_{i=1}^{n} \mid F\left(x_{i}-x_{i-1} \mid\right. & =\sum_{i=1}^{n}\left|\int_{\left[x_{i-1}, x_{i}\right]} f d \mu_{L}\right| \\
& \leq \sum_{i=1}^{n} \int_{\left[x_{i-1}, x_{i}\right]}|f| d \mu_{L} \\
& =\int_{[a, b]}|f| d \mu_{L} .
\end{aligned}
$$

Thus, since $|f|$ is integrable,

$$
V_{a}^{b}(F) \leq \int_{[a, b]}|f| d \mu_{L}<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 10

L^{p} Spaces

1. Norms

For $0<p<\infty$:

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

For $p=\infty$:

$$
\|f\|_{\infty}=\inf \{M \in[0, \infty): \mu\{x \in X:|f(x)|>M\}=0\}
$$

Theorem $22 \operatorname{Let}(X, \mathcal{A}, \mu)$ be a measure space. Then the linear space $L^{p}(X)$ is a Banach space with respect to the norm $\|\cdot\|_{p}$ for $1 \leq p<\infty$ or the norm $\|\cdot\|_{\infty}$ for $p=\infty$.
2. Inequalities for $1 \leq p<\infty$

1. Hölder's inequality: If p and q satisfy the condition $\frac{1}{p}+\frac{1}{q}=1$, then for $f \in L^{p}(X), g \in L^{q}(X)$, we have

$$
\int_{X}|f g| d \mu=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}\left(\int_{X}|g|^{q} d \mu\right)^{1 / q}
$$

or

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} .
$$

In particular,

$$
\|f g\|_{1} \leq\|f\|_{2}\|g\|_{2} \quad \text { (Schwarz's inequality). }
$$

2. Minkowski's inequality: For $f, g \in L^{p}(X)$, we have

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

3. Convergence

Theorem 23 Let $\left(f_{n}\right)$ be a sequence in $L^{p}(X)$ and f an element in $L^{p}(X)$ with $1 \leq p<\infty$. If $f_{n} \rightarrow f$ in $L^{p}(X)$, i.e., $\left\|f_{n}-f\right\|_{p} \rightarrow 0$, then
(1) $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$,
(2) $f_{n} \xrightarrow{\mu} f$ on X,
(3) There exists a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}} \rightarrow f$ a.e. on X.

www.MATHVN.com - Anh Quang Le, PhD

Theorem 24 Let $\left(f_{n}\right)$ be a sequence in $L^{p}(X)$ and f an element in $L^{p}(X)$ with $1 \leq p<\infty$. If $f_{n} \rightarrow f$ a.e. on X and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$, then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Theorem 25 Let $\left(f_{n}\right)$ be a sequence in $L^{p}(X)$ and f an element in $L^{p}(X)$ with $1 \leq p<\infty$. If $f_{n} \xrightarrow{\mu} f$ on X and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$, then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Theorem 26 Let $\left(f_{n}\right)$ be a sequence in $L^{p}(X)$ and f an element in $L^{p}(X)$ with $1 \leq p<\infty$. If $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$, then
(1) $\left\|f_{n}\right\|_{\infty} \rightarrow\|f\|_{\infty}$,
(2) $f_{n} \rightarrow f$ uniformly on $X \backslash E$ where E is a null set.
(3) $f_{n} \xrightarrow{\mu} f$ on X.

Problem 103

Let f be a Lebesgue measurable function on $[0,1]$. Suppose $0<f(x)<\infty$ for all $x \in[0,1]$. Show that

$$
\left(\int_{[0,1]} f d \mu\right)\left(\int_{[0,1]} \frac{1}{f} d \mu\right) \geq 1
$$

Solution

The functions \sqrt{f} and $\frac{1}{\sqrt{f}}$ are Lebesgue measurable since f is Lebesgue measurable and $0<f<\infty$. By Schwarz's inequality, we have

$$
\begin{aligned}
1=\int_{[0,1]} 1 d \mu=\int_{[0,1]} \sqrt{f} \frac{1}{\sqrt{f}} d \mu & \leq\left(\int_{[0,1]}(\sqrt{f})^{2} d \mu\right)^{1 / 2}\left(\int_{[0,1]}\left(\frac{1}{\sqrt{f}}\right)^{2} d \mu\right)^{1 / 2} \\
& \leq\left(\int_{[0,1]} f d \mu\right)^{1 / 2}\left(\int_{[0,1]} \frac{1}{f} d \mu\right)^{1 / 2}
\end{aligned}
$$

Squaring both sides we get

$$
\left(\int_{[0,1]} f d \mu\right)\left(\int_{[0,1]} \frac{1}{f} d \mu\right) \geq 1
$$

www.MATHVN.com - Anh Quang Le, PhD

Problem 104

Let (X, \mathcal{A}, μ) be a finite measure space. Let $f \in L^{p}(X)$ with $p \in(1, \infty)$ and q its conjugate. Show that

$$
\int_{X}|f| d \mu \leq \mu(X)^{\frac{1}{q}}\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}
$$

Hint:

Write

$$
f=f \mathbf{1}_{X}
$$

where $\mathbf{1}_{X}$ is the characteristic function of X, then apply the Hölder's inequality.

Problem 105

Let (X, \mathcal{A}, μ) be a finite measure space.
(1) If $1 \leq p<\infty$ show that $L^{\infty}(X) \subset L^{p}(X)$.
(2) If $1 \leq p_{1}<p_{2}<\infty$ show that $L^{p_{2}}(X) \subset L^{p_{1}}(X)$.

Solution

(1) Take any $f \in L^{\infty}(X)$. Then $\|f\|_{\infty}<\infty$. By definition, we have $|f| \leq\|f\|_{\infty}$ a.e. on X. So we have

$$
\int_{X}|f|^{p} d \mu \leq \int_{X}\|f\|_{\infty}^{p} d \mu=\mu(X)\|f\|_{\infty}^{p}
$$

By assumption, $\mu(X)<\infty$. Thus $\int_{X}|f|^{p} d \mu<\infty$. That is $f \in L^{p}(X)$.
(2) Consider the case $1 \leq p_{1}<p_{2}<\infty$. Take any $f \in L^{p_{2}}(X)$. Let $\alpha:=\frac{p_{2}}{p_{1}}$. Then $1<\alpha<\infty$. Let $\beta \in(1, \infty)$ be the conjugate of α, that is, $\frac{1}{\alpha}+\frac{1}{\beta}=1$. By the Hölder's inequality, we have

$$
\begin{aligned}
\int_{X}|f|^{p_{1}} d \mu & =\int_{X}\left(|f|^{p_{2}}\right)^{1 / \alpha} \mathbf{1}_{X} d \mu \\
& \leq\left(\int_{X}|f|^{p_{2}} d \mu\right)^{1 / \alpha}\left(\int_{X}\left|\mathbf{1}_{X}\right|^{\beta} d \mu\right)^{1 / \beta} \\
& =\|f\|_{p_{2}}^{p_{2} / \alpha} \mu(X)<\infty
\end{aligned}
$$

since $\|f\|_{p_{2}}<\infty$ and $\mu(X)<\infty$. Thus $f \in L^{p_{1}}(X)$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 106 (Extension of Hölder's inequality)
Let (X, \mathcal{A}, μ) be an arbitrary measure space. Let f_{1}, \ldots, f_{n} be extended complexvalued measurable functions on X such that $\left|f_{1}\right|, \ldots,\left|f_{n}\right|<\infty$ a.e. on X. Let p_{1}, \ldots, p_{n} be real numbers such that

$$
p_{1}, \ldots, p_{n} \in(1, \infty) \text { and } \frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=1 .
$$

Prove that

$$
\begin{equation*}
\left\|f_{1} \ldots f_{n}\right\|_{1} \leq\left\|f_{1}\right\|_{p_{1} \ldots}\left\|f_{n}\right\|_{p_{n}} . \tag{*}
\end{equation*}
$$

Hint:

Proof by induction. For $n=2$ we have already the Hölder's inequality.
Assume that (*) holds for $n \geq 2$. Let

$$
q=\left(\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}\right)^{-1}
$$

Then

$$
q, p_{n+1} \in(0, \infty) \text { and } \frac{1}{q}+\frac{1}{p_{n+1}}=1
$$

Keep going this way.

Problem 107

Let (X, \mathcal{A}, μ) be an arbitrary measure space. Let f_{1}, \ldots, f_{n} be extended complexvalued measurable functions on X such that $\left|f_{1}\right|, \ldots,\left|f_{n}\right|<\infty$ a.e. on X. Let p_{1}, \ldots, p_{n} and r be real numbers such that

$$
\begin{equation*}
p_{1}, \ldots, p_{n}, r \in(1, \infty) \text { and } \frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{r} \tag{i}
\end{equation*}
$$

Prove that

$$
\left\|f_{1} \ldots f_{n}\right\|_{r} \leq\left\|f_{1}\right\|_{p_{1} \ldots}\left\|f_{n}\right\|_{p_{n}}
$$

Solution

We can write (i) as follows:

$$
\frac{1}{p_{1} / r}+\ldots+\frac{1}{p_{n} / r}=1
$$

www.MATHVN.com - Anh Quang Le, PhD

From the extension of Hölder's inequality (Problem 105) we have

$$
\begin{equation*}
\left\|\left|f_{1} \ldots f_{n}\right|^{r}\right\|_{1} \leq\left\|\left|f_{1}\right|^{r}\right\|_{p_{1} / r} \cdots\left\|\left|f_{n}\right|^{r}\right\|_{p_{n} / r} . \tag{ii}
\end{equation*}
$$

Now we have

$$
\left\|\left|f_{1} \ldots f_{n}\right|^{r}\right\|_{1}=\int_{X}\left|f_{1} \ldots f_{n}\right|^{r} d \mu=\left\|f_{1} \ldots f_{n}\right\|_{r}^{r}
$$

and for $i=1, \ldots, n$ we have

$$
\left\|\left|f_{i}\right|^{r}\right\|_{p_{i} / r}=\left(\int_{X}\left|f_{i}\right|^{r \frac{p_{i}}{r}} d \mu\right)^{r / p_{i}}=\left(\int_{X}\left|f_{i}\right|^{p_{i}} d \mu\right)^{r / p_{i}}=\left\|f_{i}\right\|_{p_{i}}^{r}
$$

By substituting these expressions into (ii), we have

$$
\left\|f_{1} \ldots f_{n}\right\|_{r}^{r} \leq\left\|f_{1}\right\|_{p_{1}}^{r} \ldots\left\|f_{n}\right\|_{p_{n}}^{r}
$$

Taking the r-th roots both sides of the above inequality we obtain (i).

Problem 108

Let (X, \mathcal{A}, μ) be a measure space. Let $\theta \in(0,1)$ and let $p, q, r \geq 1$ with $p, q \geq r$ be related by

$$
\frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}
$$

Show that for every extended complex-valued measurable function on X we have

$$
\|f\|_{r} \leq\|f\|_{p}^{\theta}\|f\|_{q}^{1-\theta}
$$

Solution

Recall: (Extension of Holder's inequality)

$$
\frac{1}{r}=\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}} \Rightarrow\left\|f_{1} \ldots f_{n}\right\|_{r} \leq\|f\|_{p_{1} \ldots}\left\|f_{n}\right\|_{p_{n}}
$$

For $n=2$ we have

$$
\frac{1}{r}=\frac{1}{p}+\frac{1}{q} \Rightarrow\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Now, we have

$$
\frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}=\frac{1}{p / \theta}+\frac{1}{q /(1-\theta)}
$$

www.MATHVN.com - Anh Quang Le, PhD

Applying the above formula we get

$$
\begin{equation*}
\|f\|_{r}=\left\||f|^{\theta} \cdot|f|^{1-\theta}\right\| \leq\left\||f|^{\theta}\right\|_{p / \theta} \cdot\left\||f|^{1-\theta}\right\|_{q /(1-\theta)} . \tag{*}
\end{equation*}
$$

Some more calculations:

$$
\begin{aligned}
\left\||f|^{\theta}\right\|_{p / \theta} & =\left(\int_{X}\left(|f|^{\theta}\right)^{p / \theta}\right)^{\theta / p} \\
& =\left(\int_{X}|f|^{p}\right)^{\theta / p} \\
& =\|f\|_{p}^{\theta}
\end{aligned}
$$

And

$$
\begin{aligned}
\left\||f|^{1-\theta}\right\|_{q /(1-\theta)} & =\left(\int_{X}\left(|f|^{1-\theta}\right)^{q / 1-\theta}\right)^{1-\theta / q} \\
& =\left(\int_{X}|f|^{q}\right)^{1-\theta / q} \\
& =\|f\|_{q}^{1-\theta} .
\end{aligned}
$$

Plugging into (*) we obtain

$$
\|f\|_{r} \leq\|f\|_{p}^{\theta} \cdot\|f\|_{q}^{1-\theta} .
$$

Problem 109

Let (X, \mathcal{A}, μ) be a measure space. Let $p, q \in[1, \infty]$ be conjugate. Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset$ $L^{p}(X)$ and $f \in L^{p}(X)$ and similarly $\left(g_{n}\right)_{n \in \mathbb{N}} \subset L^{q}(X)$ and $g \in L^{q}(X)$. Show that

$$
\left[\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{q}=0\right] \Rightarrow \lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{1}=0
$$

Solution

We use Hölder's inequality:

$$
\begin{aligned}
\left\|f_{n} g_{n}-f g\right\|_{1} & =\int_{X}\left|f_{n} g_{n}-f g\right| d \mu \\
& \leq \int_{X}\left(\left|f_{n} g_{n}-f_{n} g\right|+\left|f_{n} g-f g\right|\right) d \mu \\
& \leq \int_{X}\left|f_{n} \| g_{n}-g\right| d \mu+\int_{X}|g|\left|f_{n}-f\right| d \mu \\
& \leq\left\|f_{n}\right\|_{p} \cdot\left\|g_{n}-g\right\|_{q}+\|g\|_{q} \cdot\left\|f_{n}-f\right\|_{p} . \quad(*)
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

By Minkowski's inequality, we have

$$
\left\|f_{n}\right\|_{p} \leq\|f\|_{p}+\left\|f_{n}-f\right\|_{p} .
$$

Since $\|f\|_{p}$ and $\left\|f_{n}-f\right\|_{p}$ are bounded (why?), $\left\|f_{n}\right\|_{p}$ is bounded for every $n \in \mathbb{N}$. From assumptions we deduce that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p} .\left\|g_{n}-g\right\|_{q}=0$.
Since $\|g\|_{q}$ is bounded, from assumptions we get $\lim _{n \rightarrow \infty}\|g\|_{q} \cdot\left\|f_{n}-f\right\|_{p}=0$. Therefore, from $\left({ }^{*}\right)$ we obtain

$$
\lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{1}=0
$$

Problem 110

Let (X, \mathcal{A}, μ) be a measure space and let $p \in[1, \infty)$. Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(X)$ and $f \in L^{p}(X)$ be such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$. Let $\left(g_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex-valued measurable functions on X such that $\left|g_{n}\right| \leq M$ for every $n \in \mathbb{N}$ and let g be a complex-valued measurable function on X such that $\lim _{n \rightarrow \infty} g_{n}=g$ a.e. on X. Show that

$$
\lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{p}=0
$$

Solution

We first note that $|g| \leq M$ a.e. on X. Indeed, we have for all $n \in \mathbb{N}$,

$$
|g| \leq\left|g_{n}-g\right|+\left|g_{n}\right| .
$$

Since $\left|g_{n}\right| \leq M$ for every $n \in \mathbb{N}$ and $\left|g_{n}-g\right| \rightarrow 0$ a.e. on X by assumption. Hence $|g| \leq M$ a.e. on X.
Now, by Minkowski's inequality, we have

$$
\begin{align*}
\left\|f_{n} g_{n}-f g\right\|_{p} & \leq\left\|f_{n} g_{n}-f g_{n}\right\|_{p}+\left\|f g_{n}-f g\right\|_{p} \\
& \leq\left\|g_{n}\left(f_{n}-f\right)\right\|_{p}+\left\|f\left(g_{n}-g\right)\right\|_{p} \tag{*}
\end{align*}
$$

Some more calculations:

$$
\begin{aligned}
\left\|g_{n}\left(f_{n}-f\right)\right\|_{p}^{p} & =\int_{X}\left|g_{n}\left(f_{n}-f\right)\right|^{p} d \mu \\
& \leq \int_{X}\left|g_{n}\right|^{p} \cdot\left|f_{n}-f\right|^{p} d \mu \\
& \leq M^{p}\left\|f_{n}-f\right\|_{p}^{p}
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Since $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ by assumption, we have that $\left\|g_{n}\left(f_{n}-f\right)\right\|_{p} \rightarrow 0$.
Let $h_{n}=f g_{n}-f g$ for every $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& \left|h_{n}\right| \leq|f| \cdot\left|g_{n}-g\right| \leq|f|\left(\left|g_{n}\right|+|g|\right) \leq 2 M|f| \\
& \left|h_{n}\right|^{p} \leq 2^{p} M^{p}|f|^{p}<\infty .
\end{aligned}
$$

Now, $\left|h_{n}\right|^{p}$ is bounded and $\left|h_{n}\right|^{p} \leq|f|^{p} .\left|g_{n}-g\right|^{p} \Rightarrow\left|h_{n}\right|^{p} \rightarrow 0$ (since $g_{n} \rightarrow g$ a.e.). By the Dominated Convergence Theorem, we have

$$
\begin{aligned}
0=\int_{X} \lim _{n \rightarrow \infty}\left|h_{n}\right|^{p} d \mu & =\lim _{n \rightarrow \infty} \int_{X}\left|h_{n}\right|^{p} d \mu \\
& =\lim _{n \rightarrow \infty} \int_{X}\left|f g_{n}-f g\right|^{p} d \mu \\
& =\lim _{n \rightarrow \infty}\left\|f\left(g_{n}-g\right)\right\|_{p}^{p} .
\end{aligned}
$$

From these results, $\left(^{*}\right)$ gives that

$$
\lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{p}=0
$$

Problem 111

Let f be an extended real-valued Lebesgue measurable function on $[0,1]$ such that $\int_{[0,1]}|f|^{p} d \mu<\infty$ for some $p \in[1, \infty)$. Let $q \in(1, \infty]$ be the conjugate of p. Let $a \in(0,1]$. Show that

$$
\lim _{a \rightarrow 0} \frac{1}{a^{1 / q}} \int_{[0, a]}|f| d \mu=0
$$

Solution

- $p=1$

Since $q=\infty$, we have to show

$$
\lim _{a \rightarrow 0} \int_{0}^{a}|f(s)| d s=0 \quad \text { (Lebesgue integral }=\text { Riemann integral) }
$$

This is true since f is integrable so $\int_{0}^{a}|f(s)| d s$ is continuous with respect to a.

- $1<p<\infty$

Then $1<q<\infty$. We have

$$
\begin{aligned}
\int_{0}^{a}|f(s)| d s & =\int_{0}^{a}|f(s)| \cdot 1 d s \\
& \leq \mu([0, a])^{1 / q}\left(\int_{0}^{a}|f(s)| d s\right)^{1 / p} \quad \text { (Problem 104) } \\
& =a^{1 / q}\left(\int_{0}^{a}|f(s)| d s\right)^{1 / p}
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Hence,

$$
\frac{1}{a^{1 / q}} \int_{0}^{a}|f(s)| d s \leq\left(\int_{0}^{a}|f(s)| d s\right)^{1 / p} \quad(*)
$$

Since $|f|$ is integrable, we have ${ }^{1}$ (Problem 66)

$$
\forall \varepsilon>0, \exists \delta>0: \mu([0, a])<\delta \Rightarrow \int_{[0, a]}|f| d \mu<\varepsilon^{p} .
$$

Equivalently,

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0: 0<a<\delta \Rightarrow\left(\int_{0}^{a}|f(s)| d s\right)^{1 / p}<\varepsilon \tag{**}
\end{equation*}
$$

From $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we obtain

$$
\forall \varepsilon>0, \exists \delta>0: 0<a<\delta \Rightarrow \frac{1}{a^{1 / q}} \int_{0}^{a}|f(s)| d s<\varepsilon
$$

That is,

$$
\lim _{a \rightarrow 0} \frac{1}{a^{1 / q}} \int_{0}^{a}|f(s)| d s=0
$$

Problem 112

Let (X, \mathcal{A}, μ) be a finite measure space. Let $f_{n}, f \in L^{2}(X)$ for all $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on X and $\left\|f_{n}\right\|_{2} \leq M$ for all $n \in \mathbb{N}$.
Show that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$.

Solution

We first claim: $\|f\|_{2} \leq M$. Indeed, y Fatous' lemma, we have

$$
\|f\|_{2}^{2}=\int_{X}|f|^{2} d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{2} d \mu \leq M^{2}
$$

Since $\mu(X)<\infty$, we can use Egoroff's theorem:

$$
\forall \varepsilon>0, \exists A \in \mathcal{A} \text { with } \mu(A)<\varepsilon^{2} \text { and } f_{n} \rightarrow f \text { uniformly on } X \backslash A .
$$

Now we can write

$$
\left\|f_{n}-f\right\|_{1}=\int_{X}\left|f_{n}-f\right| d \mu=\int_{A}\left|f_{n}-f\right| d \mu+\int_{X \backslash A}\left|f_{n}-f\right| d \mu .
$$

[^2]
www.MATHVN.com - Anh Quang Le, PhD

On $X \backslash A, f_{n} \rightarrow f$ uniformly, so for large n, we have $\int_{X \backslash A}\left|f_{n}-f\right| d \mu<\varepsilon$. On A we have

$$
\begin{aligned}
\int_{A}\left|f_{n}-f\right| d \mu=\int_{X}\left|f_{n}-f\right| \chi_{A} d \mu & \leq \mu(A)^{1 / 2} \cdot\left\|f_{n}-f\right\|_{2} \\
& \leq \mu(A)^{1 / 2}\left(\left\|f_{n}\right\|_{2}+\|f\|_{2}\right) \\
& \leq 2 M \varepsilon\left(\text { since } \mu(A)<\varepsilon^{2}\right)
\end{aligned}
$$

Thus, for any $\varepsilon>0$, for large n, we have

$$
\left\|f_{n}-f\right\|_{1} \leq(2 M+1) \varepsilon
$$

This tells us that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$.

Problem 113

Let (X, \mathcal{A}, μ) be a finite measure space and let $p, q \in(1, \infty)$ be conjugates. Let $f_{n}, f \in L^{p}(X)$ for all $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on X and $\left\|f_{n}\right\|_{p} \leq M$ for all $n \in \mathbb{N}$. Show that
(a) $\|f\|_{p} \leq M$.
(b) $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
(c) $\lim _{n \rightarrow \infty} \int_{X} f_{n} g d \mu=\int_{X} f g d \mu$ for every $g \in L^{q}(X)$.
(d) $\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu$ for every $E \in \mathcal{A}$.

Hint:

(a) and (b): See Problem 112.
(c) Show $\left\|f_{n} g-f g\right\|_{1} \leq\left\|f_{n}-f\right\|_{p}\|g\|_{q}$. Then use (b).
(d) Write

$$
\int_{E} f_{n} g=\int_{X} f_{n} g \mathbf{1}_{E}=\int_{X} f_{n}\left(g \mathbf{1}_{E}\right)
$$

Then use (c).

Problem 114

Let (X, \mathcal{A}, μ) be a measure space. Let f be a real-valued measurable function on X such that $f \in L^{1}(X) \cap L^{\infty}(X)$. Show that $f \in L^{p}(X)$ for every $p \in[1, \infty]$.

Hint:

If $p=1$ or $p=\infty$, there is nothing to prove.
Suppose $p \in(1, \infty)$. Let $f \in L^{1}(X) \cap L^{\infty}(X)$. Write

$$
|f|^{p}=|f|^{1}|f|^{p-1} \leq|f| \cdot\|f\|_{\infty}^{p-1}
$$

Integrate over X, then use the fact that $\|f\|_{1}$ and $\|f\|_{\infty}$ are finite.

www.MATHVN.com - Anh Quang Le, PhD

Problem 115

Let (X, \mathcal{A}, μ) be a measure space and let $0<p_{1}<p<p_{2} \leq \infty$. Show that

$$
L^{p}(X) \subset L^{p_{1}}(X)+L^{p_{2}}(X)
$$

that is, if $f \in L^{p}(X)$ then $f=g+h$ for some $g \in L^{p_{1}}(X)$ and some $h \in L^{p_{2}}(X)$.

Solution

For any $f \in L^{p}(X)$, let $D=\{X:|f| \geq 1\}$. Let $g=f \mathbf{1}_{D}$ and $h=f \mathbf{1}_{D^{c}}$. Then

$$
g+h=f \mathbf{1}_{D}+f \mathbf{1}_{D^{c}}=f(\underbrace{\mathbf{1}_{D}+\mathbf{1}_{D^{c}}}_{=\mathbf{1}_{D \cup D^{c}}})=f \quad \text { (See Problem 37) } .
$$

We want to show $g \in L^{p_{1}}(X)$ and $h \in L^{p_{2}}(X)$.
On D we have : $1 \leq|f|^{p_{1}} \leq|f|^{p} \leq|f|^{p_{2}}$. It follows that

$$
\int_{X}|g|^{p_{1}} d \mu=\int_{D}|f|^{p_{1}} d \mu \leq \int_{X}|f|^{p} d \mu<\infty \quad \text { since } \quad f \in L^{p}(X)
$$

Hence, $g \in L^{p_{1}}(X)$.
On D^{c} we have : $|f|^{p_{1}} \geq|f|^{p} \geq|f|^{p_{2}}$. It follows that

$$
\int_{X}|h|^{p_{2}} d \mu=\int_{D^{c}}|f|^{p_{2}} d \mu \leq \int_{X}|f|^{p} d \mu<\infty .
$$

Hence, $h \in L^{p_{2}}(X)$. This completes the proof.

Problem 116

Given a measure space (X, \mathfrak{A}, μ). For $0<p<r<q \leq \infty$, show that

$$
L^{p}(X) \cap L^{q}(X) \subset L^{r}(X)
$$

Hint:

Let $D=\{X:|f| \geq 1\}$. On D we have $|f|^{r} \leq|f|^{q}$, and on $X \backslash D$ we have $|f|^{r} \leq|f|^{p}$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 117

Suppose $f \in L^{4}([0,1]),\|f\|_{4}=C \geq 1$ and $\|f\|_{2}=1$. Show that

$$
\frac{1}{C} \leq\|f\|_{4 / 3} \leq 1
$$

Solution

First we note that 4 and $4 / 3$ are conjugate. By assumption and by Hölder's inequality we have

$$
\begin{aligned}
1=\|f\|_{2}^{2}=\int_{[0,1]}|f|^{2} d \mu & =\int_{[0,1]}|f| \cdot|f| d \mu \\
& \leq\|f\|_{4 \cdot} \cdot\|f\|_{4 / 3} \\
& \leq C \cdot\|f\|_{4 / 3} .
\end{aligned}
$$

This implies that $\|f\|_{4 / 3} \geq \frac{1}{C}$. (*).
By Schwrarz's inequality we have

$$
\begin{aligned}
\|f\|_{4 / 3}^{4 / 3}=\int_{[0,1]}|f|^{4 / 3} d \mu & =\int_{[0,1]}|f| \cdot|f|^{1 / 3} d \mu \\
& \leq\|f\|_{2} \cdot\|f\|_{2}^{1 / 3}=1 \text { since }\|f\|_{2}=1
\end{aligned}
$$

Hence, $\|f\|_{4 / 3} \leq 1 . \quad(* *)$
From (*) and $\left({ }^{* *}\right)$ we obtain

$$
\frac{1}{C} \leq\|f\|_{4 / 3} \leq 1
$$

Problem 118

Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) \in(0, \infty)$. Let $f \in L^{\infty}(X)$ and let $\alpha_{n}=\int_{X}|f|^{n} d \mu$ for $n \in \mathbb{N}$. Show that

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=\|f\|_{\infty}
$$

Solution

We first note that if $\|f\|_{\infty}=0$, the problem does not make sense. Indeed,

$$
\begin{aligned}
\|f\|_{\infty}=0 & \Rightarrow f \equiv 0 \text { a.e. on } X \\
& \Rightarrow \alpha_{n}=0, \forall n \in \mathbb{N} .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Suppose that $0<\|f\|_{\infty}<\infty$. Then $\alpha_{n}>0, \forall n \in \mathbb{N}$. We have

$$
\begin{aligned}
\alpha_{n+1}=\int_{X}|f|^{n+1} d \mu & =\int_{X}|f|^{n}|f| d \mu \\
& \leq\|f\|_{\infty} \cdot \int_{X}|f|^{n} d \mu=\|f\|_{\infty} \alpha_{n}
\end{aligned}
$$

This implies that

$$
\begin{gather*}
\frac{\alpha_{n+1}}{\alpha_{n}} \leq\|f\|_{\infty}, \forall n \in \mathbb{N} . \\
\Rightarrow \limsup _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}} \leq\|f\|_{\infty} . \tag{*}
\end{gather*}
$$

Notice that $\frac{n+1}{n}$ and $n+1$ are conjugate. Using again Hölder's inequality, we get

$$
\begin{aligned}
\alpha_{n}=\int_{X}|f|^{n} \cdot 1 d \mu & \leq\left(\int_{X}\left(|f|^{n}\right)^{\frac{n+1}{n}} d \mu\right)^{\frac{n}{n+1}}\left(\int_{X} 1^{n+1}\right)^{\frac{1}{n+1}} \\
& =\left(\int_{X}\left(|f|^{n+1}\right) d \mu\right)^{\frac{n}{n+1}} \cdot \mu(X)^{\frac{1}{n+1}} \\
& =\alpha_{n+1}^{\frac{n}{n+1}} \cdot \mu(X)^{\frac{1}{n+1}} .
\end{aligned}
$$

With a simple calculation we get

$$
\frac{\alpha_{n+1}}{\alpha_{n}} \geq \alpha_{n+1}^{\frac{1}{n+1}} \cdot \mu(X)^{-\frac{1}{n+1}}, \forall n \in \mathbb{N}
$$

Given any $\varepsilon>0$, let $E=\left\{X:|f|>\|f\|_{\infty}-\varepsilon\right\}$, then, by definition of $\|f\|_{\infty}$, we have $\mu(E)>0$. Now,

$$
\begin{aligned}
\alpha_{n+1}^{\frac{1}{n+1}} & =\left(\int_{X}\left(|f|^{n+1}\right) d \mu\right)^{\frac{1}{n+1}} \\
& \geq\left(\int_{E}\left(|f|^{n+1}\right) d \mu\right)^{\frac{1}{n+1}} \\
& >\mu(E)^{\frac{1}{n+1}} \cdot\left(\|f\|_{\infty}-\varepsilon\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \frac{\alpha_{n+1}}{\alpha_{n}} \geq\left(\|f\|_{\infty}-\varepsilon\right) \cdot\left[\frac{\mu(E)}{\mu(X)}\right]^{\frac{1}{n+1}} \\
& \Rightarrow \liminf _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}} \geq\|f\|_{\infty}-\varepsilon, \forall \varepsilon>0 \\
& \Rightarrow \liminf _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}} \geq\|f\|_{\infty} . \quad(* *)
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

From $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we obtain

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=\|f\|_{\infty}
$$

Problem 119

Let (X, \mathcal{A}, μ) be a measure space and $p \in[1, \infty)$.
Let $f \in L^{p}(X)$ and $\left(f_{n}: n \in \mathbb{N}\right) \subset L^{p}(X)$. Suppose $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$. Show that for every $\varepsilon>0$, there exists $\delta>0$ such that for all $n \in \mathbb{N}$ we have

$$
\int_{E}\left|f_{n}\right|^{p} d \mu<\varepsilon \quad \text { for every } E \in \mathcal{A} \quad \text { such that } \mu(E)<\delta
$$

Solution

By assumption we have $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}^{p}=0$. Equivalently,

$$
\begin{equation*}
\forall \varepsilon>0, \exists N \in \mathbb{N}: n \geq N \Rightarrow\left\|f_{n}-f\right\|_{p}^{p}<\frac{\varepsilon}{2^{p+1}} \tag{1}
\end{equation*}
$$

From triangle inequality we have ${ }^{2}$

$$
\begin{aligned}
& \left|f_{n}\right| \leq\left|f_{n}-f\right|+|f|, \\
& \left|f_{n}\right|^{p} \leq\left(\left|f_{n}-f\right|+|f|\right)^{p} \leq 2^{p}\left|f_{n}-f\right|^{p}+2^{p}|f|^{p}
\end{aligned}
$$

Integrating over $E \in \mathcal{A}$ and using (1), we get for $n \geq N$,

$$
\begin{align*}
\int_{E}\left|f_{n}\right|^{p} d \mu & \leq 2^{p} \int_{E}\left|f_{n}-f\right|^{p} d \mu+2^{p} \int_{E}|f|^{p} d \mu \\
& \leq 2^{p}\left\|f_{n}-f\right\|_{p}^{p}+2^{p} \int_{E}|f|^{p} d \mu \\
& \leq 2^{p} \cdot \frac{\varepsilon}{2^{p+1}}+2^{p} \int_{E}|f|^{p} d \mu \\
& =\frac{\varepsilon}{2}+2^{p} \int_{E}|f|^{p} d \mu \tag{2}
\end{align*}
$$

[^3]
www.MATHVN.com - Anh Quang Le, PhD

Since $|f|^{p}$ is integrable, by the uniform absolute continuity of integral (Problem 66) we have

$$
\exists \delta_{0}>0: \mu(E)<\delta_{0} \Rightarrow \int_{E}|f|^{p} d \mu<\frac{\varepsilon}{2^{p+1}}
$$

So, for $n \geq N$, from (2) we get

$$
\begin{equation*}
\exists \delta_{0}>0: \mu(E)<\delta_{0} \Rightarrow \int_{E}\left|f_{n}\right|^{p} d \mu \leq \frac{\varepsilon}{2}+2^{p} \cdot \frac{\varepsilon}{2^{p+1}}=\varepsilon . \tag{3}
\end{equation*}
$$

Similarly, all $\left|f_{1}\right|^{p}, \ldots,\left|f_{N-1}\right|^{p}$ are integrable, so we have

$$
\begin{equation*}
\exists \delta_{j}>0: \mu(E)<\delta_{j} \Rightarrow \int_{E}\left|f_{j}\right|^{p} d \mu<\varepsilon, \quad j=1, \ldots, N-1 \tag{4}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{0}, \delta_{1}, . ., \delta_{N-1}\right\}$. From (3) and (4) we get for every $n \in \mathbb{N}$,

$$
\exists \delta>0: \mu(E)<\delta \Rightarrow \int_{E}\left|f_{n}\right|^{p} d \mu<\varepsilon
$$

Problem 120

Let f be a bounded real-valued integrable function on $[0,1]$. Suppose $\int_{[0,1]} x^{n} f d \mu=0$ for $n=0,1,2, \ldots$. Show that $f=0$ a.e. on $[0,1]$.

Solution

Fix an arbitrary function $\varphi \in C[0,1]$. By the Stone-Weierstrass theorem, there is a sequence $\left(p_{n}\right)$ of polynomials such that $\left\|\varphi-p_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\begin{aligned}
\left|\int_{[0,1]} f \varphi d \mu\right| & =\left|\int_{[0,1]} f\left(\varphi-p_{n}+p_{n}\right) d \mu\right| \\
& \leq \int_{[0,1]}|f|\left|\varphi-p_{n}\right| d \mu+\left|\int_{[0,1]} f p_{n} d \mu\right| \\
& \leq\|f\|_{1}\left\|\varphi-p_{n}\right\|_{\infty}+\underbrace{\left|\int_{[0,1]} f p_{n} d \mu\right|}_{=0 \text { by hypothesis }} \\
& =\|f\|_{1}\left\|\varphi-p_{n}\right\|_{\infty} .
\end{aligned}
$$

Since $\|f\|_{1}<\infty$ and $\left\|\varphi-p_{n}\right\|_{\infty} \rightarrow 0$, we have

$$
\begin{equation*}
\int_{[0,1]} f \varphi d \mu=0, \forall \varphi \in C[0,1] . \tag{*}
\end{equation*}
$$

www.MATHVN.com - Anh Quang Le, PhD

Now, since $C[0,1]$ is dense in $L^{1}[0,1]$, there exists a sequence $\left(\varphi_{n}\right) \subset C[0,1]$ such that $\left\|\varphi_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\begin{aligned}
0 \leq \int_{[0,1]} f^{2} d \mu & =\left|\int_{[0,1]} f\left(f-\varphi_{n}+\varphi_{n}\right) d \mu\right| \\
& \leq \int_{[0,1]}|f|\left|f-\varphi_{n}\right| d \mu+\underbrace{\int_{[0,1]} f \varphi_{n} d \mu \mid}_{=0 \text { by }\left(^{*}\right)} \\
& \leq\|f\|_{\infty}\left\|f-\varphi_{n}\right\|_{1} .
\end{aligned}
$$

Since $\|f\|_{\infty}<\infty$ and $\left\|f-\varphi_{n}\right\|_{1} \rightarrow 0$, we have

$$
\int_{[0,1]} f^{2} d \mu=0 .
$$

Thus $f=0$ a.e. on $[0,1]$.

Problem 121

$\operatorname{Let}(X, \mathcal{A}, \mu)$ be a σ-finite measure space with $\mu(X)=\infty$.
(a) Show that there exists a disjoint sequence $\left(E_{n}: n \in \mathbb{N}\right)$ in \mathcal{A} such that $\bigcup_{n \in \mathbb{N}} E_{n}=X$ and $\mu\left(E_{n}\right) \in[1, \infty)$ for every $n \in \mathbb{N}$.
(b) Show that there exists an extended real-valued measurable function f on X such that $f \notin L^{1}(X)$ and $f \in L^{p}(X)$ for all $p \in(1, \infty]$.

Solution

(a) Since (X, \mathcal{A}, μ) is a σ-finite measure space, there exists a sequence $\left(A_{n}: n \in \mathbb{N}\right)$ of disjoint sets in \mathcal{A} such that

$$
X=\bigcup_{n \in \mathbb{N}} A_{n} \text { and } \mu\left(A_{n}\right)<\infty, \forall n \in \mathbb{N}
$$

By the countable additivity and by assumption, we have

$$
\mu(X)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)=\infty
$$

It follows that

$$
\exists k_{1} \in \mathbb{N}: 1 \leq \sum_{n=1}^{k_{1}} \mu\left(A_{n}\right)=\mu\left(A_{1} \cup \ldots \cup A_{k_{1}}\right)<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Let $E_{1}=A_{1} \cup \ldots \cup A_{k_{1}}$ then we have

$$
1 \leq \mu\left(E_{1}\right)<\infty \text { and } \mu\left(A_{k_{1}+1} \cup A_{k_{1}+2} \cup \ldots\right)=\mu\left(X \backslash E_{1}\right)=\infty
$$

Then there exists $k_{2} \geq k_{1}+1$ such that

$$
1 \leq \mu\left(A_{k_{1}+1} \cup \ldots \cup A_{k_{2}}\right)<\infty .
$$

Let $E_{1}=A_{k_{1}+1} \cup \ldots \cup A_{k_{2}}$ then we have

$$
1 \leq \mu\left(E_{2}\right)<\infty \text { and } E_{1} \cap E_{1}=\emptyset
$$

And continuing this process we are building a sequence ($E_{n}: n \in \mathbb{N}$) of disjoint subsets in \mathcal{A} satisfying

$$
\bigcup_{n \in \mathbb{N}} E_{n}=\bigcup_{n \in \mathbb{N}} A_{n}=X \text { and } \mu\left(E_{n}\right) \in[1, \infty), \forall n \in \mathbb{N} .
$$

(b) Define a real-valued function f on $X=\bigcup_{n \in \mathbb{N}} A_{n}$ by

$$
f=\sum_{n=1}^{\infty} \frac{\chi_{A_{n}}}{n \mu\left(A_{n}\right)} .
$$

Then

$$
\left.f\right|_{A_{1}}=\frac{1}{1 \mu\left(A_{1}\right)}, \ldots,\left.f\right|_{A_{n}}=\frac{1}{n \mu\left(A_{n}\right)}, \ldots
$$

Hence,

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{A_{n}} f d \mu=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

That is $f \notin L^{1}(X)$.
We also have

$$
\left.f^{p}\right|_{A_{1}}=\frac{1}{1^{p} \mu\left(A_{1}\right)^{p}}, \ldots,\left.f^{p}\right|_{A_{n}}=\frac{1}{n^{p} \mu\left(A_{n}\right)^{p}}, \ldots(1<p<\infty)
$$

By integrating

$$
\begin{aligned}
\int_{X} f^{p} d \mu & =\sum_{n=1}^{\infty} \int_{A_{n}} f^{p} d \mu \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{p} \mu\left(A_{n}\right)^{p-1}} \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{p}}<\infty . \text { since } \mu\left(A_{n}\right)^{p-1} \geq 1 .
\end{aligned}
$$

Thus, $f \in L^{p}(X)$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 122

Consider the space $L^{p}([0,1])$ where $p \in(1, \infty]$.
(a) Prove that $\|f\|_{p}$ is increasing in p for any bounded measurable function f.
(b) Prove that $\|f\|_{p} \rightarrow\|f\|_{\infty}$ when $p \rightarrow \infty$.

Solution

(a)

- Suppose $1<p<\infty$. We want to show $\|f\|_{p} \leq\|f\|_{\infty}$.

By definition, we have

$$
|f| \leq\|f\|_{\infty} \text { a.e. on }[0,1] .
$$

Therefore,

$$
\begin{aligned}
& |f|^{p} \leq\|f\|_{\infty}^{p} \text { a.e. on }[0,1] . \\
& \Rightarrow \int_{[0,1]}|f|^{p} d \mu \leq \int_{[0,1]}\|f\|_{\infty}^{p} d \mu \\
& \Rightarrow\|f\|_{p}^{p} \leq\|f\|_{\infty}^{p} \mu([0,1]) \\
& \Rightarrow\|f\|_{p} \leq\|f\|_{\infty} .
\end{aligned}
$$

- Suppose $1<p_{1}<p_{2}<\infty$. We want to show $\|f\|_{p_{1}} \leq\|f\|_{p_{2}}$.

Notice that

$$
\frac{p_{1}}{p_{2}}+\frac{p_{2}-p_{1}}{p_{2}}=1 \text { or } \frac{1}{p_{2} / p_{1}}+\frac{1}{p_{2} /\left(p_{2}-p_{1}\right)}=1 .
$$

By Hölder's inequality we have

$$
\begin{align*}
\|f\|_{p_{1}}^{p_{1}}=\int_{[0,1]}|f|^{p_{1}} d \mu & =\int_{[0,1]}|f|^{p_{1}} \cdot 1 \cdot d \mu \\
& \leq\left\||f|^{p_{1}}\right\|_{p_{2} / p_{1}} \cdot\|1\|_{p_{2} /\left(p_{2}-p_{1}\right)} \\
& =\|f\|_{p_{2} / p_{1}}^{p_{1}} \cdot(*) \tag{*}
\end{align*}
$$

Now,

$$
\begin{aligned}
\|f\|_{p_{2} / p_{1}}^{p_{1}} & =\left(\int_{[0,1]}|f|^{p_{1} \cdot \frac{p_{2}}{p_{1}}} d \mu\right)^{p_{1} / p_{2}} \\
& =\left(\int_{[0,1]}|f|^{p_{2}} d \mu\right)^{p_{1} \cdot \frac{1}{p_{2}}}=\|f\|_{p_{2}}^{p_{1}} .
\end{aligned}
$$

Finally, $\left({ }^{*}\right)$ implies that $\|f\|_{p_{1}} \leq\|f\|_{p_{2}}$.
In both cases we have

$$
1<p_{1}<p_{2} \Longrightarrow\|f\|_{p_{1}} \leq\|f\|_{p_{2}}
$$

www.MATHVN.com - Anh Quang Le, PhD

That is $\|f\|_{p}$ is increasing in p.
(b) By part (a) we get $\|f\|_{p} \leq\|f\|_{\infty}$. Then

$$
\begin{equation*}
\limsup _{p \rightarrow \infty}\|f\|_{p} \leq\|f\|_{\infty} \tag{i}
\end{equation*}
$$

Given any $\varepsilon>0$, let $E=\left\{X:|f|>\|f\|_{\infty}-\varepsilon\right\}$. Then $\mu(E)>0$ and

$$
\begin{aligned}
& \|f\|_{p}^{p} \geq \int_{E}|f|^{p} d \mu>\left(\|f\|_{\infty}-\varepsilon\right)^{p} \mu(E) \\
& \Rightarrow\|f\|_{p} \geq\left(\|f\|_{\infty}-\varepsilon\right) \mu(E)^{1 / p} \\
& \Rightarrow \liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty}-\varepsilon, \forall \varepsilon>0 \quad\left(\text { since } \quad \lim _{p \rightarrow \infty} \mu(E)^{1 / p}=1\right) . \\
& \Rightarrow \liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty} . \quad \text { (ii) }
\end{aligned}
$$

From (i) and (ii) we obtain

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}
$$

APPENDIX

The L^{p} Spaces for $0<p<1$
Let (X, \mathcal{A}, μ) be a measure space and $p \in(0,1)$. It is easy to check that $L^{p}(X)$ is a linear space.
Exercise 1. If $\|f\|_{p}:=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}$ and $0<p<1$, then $\|\cdot\|_{p}$ is not a norm on X.
Hint:
Show that $\|.\|_{p}$ does not satisfy the triangle inequality:
Take $X=[0,1]$ with the Lebesgue measure on it. Let $f=\mathbf{1}_{\left[0, \frac{1}{2}\right)}$ and $g=\mathbf{1}_{\left[\frac{1}{2}, 1\right)}$. Then show that

$$
\|f+g\|_{p}=1 .
$$

and that

$$
\|f\|_{p}=2^{-\frac{1}{p}} \text { and }\|g\|_{p}=2^{-\frac{1}{p}} .
$$

It follows that

$$
\|f+g\|_{p}>\|f\|_{p}+\|g\|_{p} .
$$

Exercise 2. If $\alpha, \beta \in \mathbb{C}$ and $0<p<1$, then

$$
|\alpha+\beta|^{p} \leq|\alpha|^{p}+|\alpha|^{p} .
$$

Hint:
Consider the real-valued function $\varphi(t)=(1+t)^{p}-1-t^{p}, t \in[0, \infty)$. Show that it is strictly decreasing on $[0, \infty)$. Then take $t=\frac{|\beta|}{|\alpha|}>0$.

www.MATHVN.com - Anh Quang Le, PhD

Exercise 3. For $0<p<1,\|\cdot\|_{p}$ is not a norm. However

$$
\rho_{p}(f, g):=\int_{X}|f-g|^{p} d \mu, \quad f, g \in L^{p}(X)
$$

is a metric on $L^{p}(X)$.
Proof.
We prove only the triangle inequality. For $f, g, h \in L^{p}(X)$, we have

$$
\begin{aligned}
\rho_{p}(f, g) & =\int_{X}|f-g|^{p} d \mu \\
& =\int_{X}|(f-h)+(h-g)|^{p} d \mu \\
& \leq \int_{X}(|f-h|+|h-g|)^{p} d \mu \\
& \leq \int_{X}|f-h|^{p} d \mu+\int_{X}|h-g|^{p} d \mu \quad \text { (by Exercise 2) } \\
& =\rho_{p}(f, h)+\rho_{p}(h, g) .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 11

Integration on Product Measure Space

1. Product measure spaces

Definition 32 (Product measure)
Given n measure spaces $\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right), \ldots,\left(X_{n}, \mathcal{A}_{n}, \mu_{n}\right)$. Consider the product measurable space $\left(X_{1} \times \ldots \times X_{n}, \sigma\left(\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}\right)\right)$. A measure μ on $\sigma\left(\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}\right)$ such that

$$
\mu(E)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right) \text { for } E=A_{1} \times \ldots \times A_{n} \in \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}
$$

with the convention $\infty .0=0$ is called a product measure of μ_{1}, \ldots, μ_{n} and we write

$$
\mu=\mu_{1} \times \ldots \times \mu_{n}
$$

Theorem 27 (Existence and uniqueness)
For n arbitrary measure spaces $\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right), \ldots,\left(X_{n}, \mathcal{A}_{n}, \mu_{n}\right)$, a product measure space $\left(X_{1} \times \ldots \times\right.$ $\left.X_{n}, \sigma\left(\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}\right), \mu_{1} \times \ldots \times \mu_{n}\right)$ exists. Moreover, if the n measure spaces are all σ-finite, then the product measure space is unique.

2. Integration

Definition 33 (Sections and section functions)
Let $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ be the product of two σ-finite measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν). Let $E \subset X \times Y$, and f be an extended real-valued function on E.
(a) For $x \in X$, the set $E(x,):.=\{y \in Y:(x, y) \in E\}$ is called the x-section of E.

For $y \in Y$, the set $E(., y):=\{x \in X:(x, y) \in E\}$ is called the y-section of E.
(b) For $x \in X$, the function $f(x,$.$) defined on E(x,$.$) is called the x$-section of f.

For $y \in Y$, the function $f(., y)$ defined on $E(., y)$ is called the y-section of f.
Proposition 24 Let $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ be the product of two σ-finite measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν). For every $E \in \sigma(\mathcal{A} \times \mathcal{B}), \nu(E(x,)$.$) is a \mathcal{A}$-measurable function of $x \in X$ and $\mu(E(., y))$ is a \mathcal{B}-measurable function of $y \in Y$. Furthermore, we have

$$
(\mu \times \nu)(E)=\int_{X} \nu(E(x, .)) \mu(d x)=\int_{Y} \mu(E(., y)) \nu(d y)
$$

www.MATHVN.com - Anh Quang Le, PhD

Theorem 28 (Tonelli's Theorem)
Let $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ be product measure space of two σ-finite measure spaces. Let f be a non-negative extended real-valued measurable on $X \times Y$. Then
(a) $F^{1}(x):=\int_{Y} f(x,). d \nu$ is a \mathcal{A}-measurable function of $x \in X$.
(b) $F^{2}(y):=\int_{X} f(., y) d \mu$ is a \mathcal{B}-measurable function of $y \in Y$.
(c) $\int_{X \times Y} f d(\mu \times \nu)=\int_{X} F^{1} d \mu=\int_{Y} F^{2} d \nu$, that is,

$$
\int_{X \times Y} f d(\mu \times \nu)=\int_{X}\left[\int_{Y} f(x, .) d \nu\right] d \mu=\int_{Y}\left[\int_{X} f(., y) d \mu\right] d \nu
$$

Theorem 29 (Fubini's Theorem)
Let $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ be product measure space of two σ-finite measure spaces. Let f be a $\mu \times \nu$-integrable extended real-valued measurable function on $X \times Y$. Then
(a) The \mathcal{B}-measurable function $f(x,$.$) is \nu$-integrable on Y for μ-a.e. $x \in X$ and the \mathcal{A} measurable function $f(., y)$ is μ-integrable on X for ν-a.e. $y \in Y$.
(b) The function $F^{1}(x):=\int_{Y} f(x,). d \nu$ is defined for μ-a.e. $x \in X, \mathcal{A}$-measurable and μ integrable on X.
The function $F^{2}(y):=\int_{X} f(., y) d \nu$ is defined for ν-a.e. $y \in X, \mathcal{B}$-measurable and ν integrable on Y.
(c) We have the equalities: $\int_{X \times Y} f d(\mu \times \nu)=\int_{X} F^{1} d \mu=\int_{Y} F^{2} d \nu$, that is,

$$
\int_{X \times Y} f d(\mu \times \nu)=\int_{X}\left[\int_{Y} f(x, .) d \nu\right] d \mu=\int_{Y}\left[\int_{X} f(., y) d \mu\right] d \nu
$$

Problem 123

Consider the product measure space $\left(\mathbb{R} \times \mathbb{R}, \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right), \mu_{L} \times \mu_{L}\right)$. Let $D=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y\}$. Show that

$$
D \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right) \quad \text { and } \quad\left(\mu_{L} \times \mu_{L}\right)(D)=0
$$

Solution

Let $\lambda=\mu_{L} \times \mu_{L}$. Let $D_{0}=\{(x, y) \in[0,1] \times[0,1]: x=y\}$. For each $n \in \mathbb{Z}$ let

www.MATHVN.com - Anh Quang Le, PhD

$D_{n}=\{(x, y) \in[n, n+1] \times[n, n+1]: x=y\}$. Then, by translation invariance of Lebesgue measure, we have

$$
\begin{aligned}
& \lambda\left(D_{0}\right)=\lambda\left(D_{n}\right), \forall n \in \mathbb{N} . \\
& \text { and } D=\bigcup_{n \in \mathbb{Z}} D_{n} .
\end{aligned}
$$

To solve the problem, it suffices to prove $D_{0} \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right)$ and $\lambda\left(D_{0}\right)=0$.
For each $n \in \mathbb{N}$, divide $[0,1]$ into 2^{n} equal subintervals as follows:

$$
I_{n, 1}=\left[0, \frac{1}{2^{n}}\right], I_{n, 2}=\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right], \ldots, I_{n, 2^{n}}=\left[\frac{2^{n}-1}{2^{n}}, 1\right] .
$$

Let $S_{n}=\bigcup_{k=1}^{2^{n}}\left(I_{n, k} \times I_{n, k}\right)$, then $D_{0}=\lim _{n \rightarrow \infty} S_{n}$.
Now, for each $n \in \mathbb{N}$ and for $k=1,2, \ldots, 2^{n}, \quad I_{n, k} \in \mathcal{B}_{\mathbb{R}}$. Therefore,

$$
I_{n, k} \times I_{n, k} \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right) \text { and so } S_{n} \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right)
$$

Hence, $D_{0} \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right)$.
It is clear that $\left(S_{n}\right)$ is decreasing (make a picture yourself), so

$$
D_{0}=\lim _{n \rightarrow \infty} S_{n}=\bigcap_{n=1}^{\infty} S_{n} .
$$

And we have

$$
\begin{aligned}
\lambda\left(S_{n}\right) & =\sum_{k=1}^{2^{n}} \lambda\left(I_{n, k} \times I_{n, k}\right) \\
& =\sum_{k=1}^{2^{n}} \frac{1}{2^{n}} \cdot \frac{1}{2^{n}}=2^{n} \cdot \frac{1}{2^{2 n}}=\frac{1}{2^{n}}
\end{aligned}
$$

It follows that

$$
\lambda\left(D_{0}\right) \leq \lambda\left(S_{n}\right)=\frac{1}{2^{n}}, \forall n \in \mathbb{N}
$$

Thus, $\lambda\left(D_{0}\right)=0$.

Problem 124

Consider the product measure space $\left(\mathbb{R} \times \mathbb{R}, \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right)\right.$, $\left.\mu_{L} \times \mu_{L}\right)$. Let f be a real-valued function of bounded variation on $[a, b]$. Consider the graph of f :

$$
G=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=f(x) \text { for } x \in \mathbb{R}\}
$$

Show that $G \in \sigma\left(\mathcal{B}_{\mathbb{R}} \times \mathcal{B}_{\mathbb{R}}\right)$ and $\left(\mu_{L} \times \mu_{L}\right)(G)=0$.

www.MATHVN.com - Anh Quang Le, PhD

Hint:

Partition of $[a, b]$:

$$
P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\} .
$$

Elementary rectangles:

$$
R_{n, k}=\left[x_{k-1}, x_{k}\right] \times\left[m_{k}, M_{k}\right], \quad k=1, \ldots, n,
$$

where

$$
m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x) \quad \text { and } \quad M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x) .
$$

Let

$$
R_{n}=\bigcup_{k=1}^{n} R_{n, k} \quad \text { and } \quad\|P\|=\max _{1 \leq k \leq n}\left(x_{k}-x_{k-1}\right)
$$

Let $\lambda=\mu_{L} \times \mu_{L}$. Show that

$$
\lambda\left(R_{n}\right) \leq\|P\| \sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \leq\|P\| V_{a}^{b}(f)
$$

Problem 125

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be the measure spaces given

$$
\begin{aligned}
& X=Y=[0,1] \\
& \mathcal{A}=\mathcal{B}=\mathcal{B}_{[0,1]}, \text { the } \sigma \text {-algebra of the Borel sets in }[0,1], \\
& \mu=\mu_{L} \text { and } \nu \text { is the counting measure. }
\end{aligned}
$$

Consider the product measurable space $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}))$ and a subset in it defined by $E=\{(x, y) \in X \times Y: x=y\}$. Show that
(a) $E \in \sigma(\mathcal{A} \times \mathcal{B})$,
(b) $\int_{X}\left(\int_{Y} \chi_{E} d \nu\right) d \mu \neq \int_{Y}\left(\int_{X} \chi_{E} d \mu\right) d \nu$.

Why is Tonelli's theorem not applicable?

Solution

(a) For each $n \in \mathbb{N}$, divide $[0,1]$ into 2^{n} equal subintervals as follows:

$$
I_{n, 1}=\left[0, \frac{1}{2^{n}}\right], I_{n, 2}=\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right], \ldots, I_{n, 2^{n}}=\left[\frac{2^{n}-1}{2^{n}}, 1\right] .
$$

Let $S_{n}=\bigcup_{k=1}^{2^{n}}\left(I_{n, k} \times I_{n, k}\right)$. It is clear that $\left(S_{n}\right)$ is decreasing, so

$$
E=\lim _{n \rightarrow \infty} S_{n}=\bigcap_{n=1}^{\infty} S_{n}
$$

www.MATHVN.com - Anh Quang Le, PhD

Now, for each $n \in \mathbb{N}$ and for $k=1,2, \ldots, 2^{n}, \quad I_{n, k} \in \mathcal{B}_{[0,1]}$. Therefore,

$$
I_{n, k} \times I_{n, k} \in \sigma\left(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]}\right) \text { and so } S_{n} \in \sigma\left(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]}\right)
$$

Hence, $E \in \sigma\left(\mathcal{B}_{[0,1]} \times \mathcal{B}_{[0,1]}\right)$.
(b) For any $x \in X, \mathbf{1}_{E}(x,)=.\mathbf{1}_{\{x\}}($.$) . Therefore,$

$$
\int_{Y} \mathbf{1}_{E} d \nu=\int_{[0,1]} \mathbf{1}_{\{x\}} d \nu=\nu\{x\}=1
$$

Hence,

$$
\begin{equation*}
\int_{X}\left(\int_{Y} \mathbf{1}_{E} d \nu\right) d \mu=\int_{[0,1]} 1 d \mu=1 \tag{*}
\end{equation*}
$$

On the other hand, for every $y \in Y, \mathbf{1}_{E}(., y)=\mathbf{1}_{\{y\}}($.$) . Therefore,$

$$
\int_{X} \mathbf{1}_{E} d \mu=\int_{[0,1]} \mathbf{1}_{\{y\}} d \mu=\mu\{y\}=0 .
$$

Hence,

$$
\begin{equation*}
\int_{Y}\left(\int_{X} \mathbf{1}_{E} d \mu\right) d \nu=\int_{[0,1]} 0 d \mu=0 . \tag{**}
\end{equation*}
$$

Thus, from $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we get

$$
\int_{X}\left(\int_{Y} \mathbf{1}_{E} d \nu\right) d \mu \neq \int_{Y}\left(\int_{X} \mathbf{1}_{E} d \mu\right) d \nu
$$

Tonelli's theorem requires that the two measures must be σ-finite. Here, the counting measure ν is not σ-finite, so Tonelli's theorem is not applicable.

Question: Why the counting measure on $[0,1]$ is not σ-finite?

Problem 126

Suppose g is a Lebesgue measurable real-valued function on $[0,1]$ such that the function $f(x, y)=2 g(x)-3 g(y)$ is Lebesgue integrable over $[0,1] \times[0,1]$. Show that g is Lebesgue integrable over $[0,1]$.

www.MATHVN.com - Anh Quang Le, PhD

146

Solution

By Fubini's theorem we have

$$
\begin{aligned}
\int_{[0,1] \times[0,1]} f(x, y) d\left(\mu_{L}(x) \times \mu_{L}(y)\right) & =\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1}[2 g(x)-3 g(y)] d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2 g(x) d x d y-\int_{0}^{1} \int_{0}^{1} 3 g(y) d x d y \\
& =2 \int_{0}^{1} g(x)\left(\int_{0}^{1} 1 \cdot d y\right) d x-3 \int_{0}^{1} g(y)\left(\int_{0}^{1} 1 \cdot d x\right) d y \\
& =2 \int_{0}^{1} g(x) \cdot 1 \cdot d x-3 \int_{0}^{1} g(y) \cdot 1 \cdot d y \\
& =2 \int_{0}^{1} g(x) d x-3 \int_{0}^{1} g(y) d y \\
& =-\int_{0}^{1} g(x) d x
\end{aligned}
$$

Since $f(x, y)$ is Lebesgue integrable over $[0,1] \times[0,1]$:

$$
\left|\int_{[0,1] \times[0,1]} f(x, y) d\left(\mu_{L}(x) \times \mu_{L}(y)\right)\right|<\infty .
$$

Therefore,

$$
\left|\int_{0}^{1} g(x) d x\right|<\infty
$$

That is g is Lebesgue (Riemann) integrable over $[0,1]$.

Problem 127

Let (X, \mathfrak{M}, μ) be a complete measure space and let f be a non-negative integrable function on X. Let $b(t)=\mu\{x \in X: f(x) \geq t\}$. Show that

$$
\int_{X} f d \mu=\int_{0}^{\infty} b(t) d t
$$

Solution

Define $F:[0, \infty) \times X \rightarrow \mathbb{R}$ by

$$
F(t, x)= \begin{cases}1 & \text { if } 0 \leq t \leq f(x) \\ 0 & \text { if } t>f(x)\end{cases}
$$

www.MATHVN.com - Anh Quang Le, PhD

If $E_{t}=\{x \in X: f(x) \geq t\}$, then $F(t, x)=\mathbf{1}_{E_{t}}(x)$. We have

$$
\int_{0}^{\infty} F(t, x) d t=\int_{0}^{f(x)} F(t, x) d t+\int_{f(x)}^{\infty} F(t, x) d t=f(x)+0=f(x)
$$

By Fubini's theorem we have

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X}\left(\int_{0}^{f(x)} d t\right) d x \\
& =\int_{X}\left(\int_{0}^{\infty} F(t, x) d t\right) d x \\
& =\int_{0}^{\infty}\left(\int_{X} F(t, x) d x\right) d t \\
& =\int_{0}^{\infty}\left(\int_{X} \mathbf{1}_{E_{t}}(x) d x\right) d t \\
& =\int_{0}^{\infty} b(t) d t . \quad\left(\text { since } \mu\left(E_{t}\right)=b(t)\right)
\end{aligned}
$$

Problem 128

Consider the function $u:[0,1] \times[0,1] \rightarrow \mathbb{R}$ defined by

$$
u(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{cases}
$$

(a) Calculate

$$
\int_{0}^{1}\left(\int_{0}^{1} u(x, y) d y\right) d x \text { and } \int_{0}^{1}\left(\int_{0}^{1} u(x, y) d x\right) d y
$$

Observation?
(b) Check your observation by using polar coordinates to show that

$$
\iint_{D}|u(x, y)| d x d y=\infty
$$

that is, u is not integrable. Here D is the unit disk.

Answer.
(a) $\frac{\pi}{4}$ and $-\frac{\pi}{4}$.

www.MATHVN.com - Anh Quang Le, PhD

Problem 129

Let

$$
\begin{aligned}
& I[0,1], \mathbb{R}_{+}=[0, \infty), \\
& f(u, v)=\frac{1}{1+u^{2} v^{2}}, \\
& g(x, y, t)=f(x, t) f(y, t), \quad(x, y, t) \in I \times I \times \mathbb{R}_{+}:=J .
\end{aligned}
$$

(a) Show that g is integrable on J (equipped with Lebesgue measure). Using Tonelli's theorem on $\mathbb{R}_{+} \times I \times I$ show that

$$
A=: \int_{J} g d t d x d y=\int_{\mathbb{R}_{+}}\left(\frac{\arctan t}{t}\right)^{2} d t .
$$

(b) Using Tonelli's theorem on $I \times I \times \mathbb{R}_{+}$show that

$$
A=\frac{\pi}{2} \int_{I \times I} \frac{1}{x+y} d x d y
$$

(c) Using Tonelli's theorem again show that $A=\pi \ln 2$.

Solution

(a) It is clear that g is continuous on \mathbb{R}^{3}, so measurable. Using Tonelli's theorem on $\mathbb{R}_{+} \times I \times I$ we have

$$
\begin{aligned}
A & =\int_{\mathbb{R}_{+}}\left(\int_{I \times I} f(x, t) f(y, t) d x d y\right) d t \\
& =\int_{\mathbb{R}_{+}}\left(\int_{I} f(x, t)\left(\int_{I} f(y, t) d y\right) d x\right) d t \\
& =\int_{\mathbb{R}_{+}}\left(\left(\int_{I} \frac{1}{1+x^{2} t^{2}} d x\right)\left(\int_{I} \frac{1}{1+y^{2} t^{2}} d y\right)\right) d t \\
& =\int_{\mathbb{R}_{+}}\left(\int_{I} \frac{1}{1+x^{2} t^{2}} d x\right)^{2} d t \\
& =\int_{\mathbb{R}_{+}}\left(\frac{\arctan t}{t}\right)^{2} d t .
\end{aligned}
$$

Note that for all $t \in \mathbb{R}_{+}, 0<\arctan t<\frac{\pi}{2}$ and $\arctan t \sim t$ as $t \rightarrow 0$, so

$$
A=\int_{\mathbb{R}_{+}}\left(\frac{\arctan t}{t}\right)^{2} d t<\infty
$$

www.MATHVN.com - Anh Quang Le, PhD

Thus g is integrable on J.
(b) We first decompose $g(x, y, t)=f(x, t) f(y, t)$ into simple elements:

$$
\begin{aligned}
g(x, y, t)=f(x, t) f(y, t) & =\frac{1}{1+x^{2} t^{2}} \cdot \frac{1}{1+y^{2} t^{2}} \\
& =\frac{1}{x^{2}-y^{2}}\left[\frac{x^{2}}{1+x^{2} t^{2}}-\frac{y^{2}}{1+y^{2} t^{2}}\right] .
\end{aligned}
$$

Using Tonelli's theorem on $I \times I \times \mathbb{R}_{+}$we have

$$
\begin{aligned}
A & =\int_{I \times I}\left(\int_{\mathbb{R}_{+}} \frac{1}{x^{2}-y^{2}}\left[\frac{x^{2}}{1+x^{2} t^{2}}-\frac{y^{2}}{1+y^{2} t^{2}}\right] d t\right) d x d y \\
& =\int_{I \times I} \frac{1}{x^{2}-y^{2}}\left(\int_{\mathbb{R}_{+}}\left[\frac{x}{1+s^{2}}-\frac{y}{1+s^{2}}\right] d s\right) d x d y \\
& =\int_{I \times I} \frac{1}{x+y}\left(\int_{0}^{\infty} \frac{d s}{1+s^{2}}\right) d x d y \\
& =\frac{\pi}{2} \int_{I \times I} \frac{1}{x+y} d x d y .
\end{aligned}
$$

(c) Using (b) and using Tonelli's theorem again we get

$$
\begin{aligned}
A & =\frac{\pi}{2} \int_{0}^{1}\left(\int_{0}^{1} \frac{1}{x+y} d y\right) d x \\
& =\frac{\pi}{2} \int_{0}^{1}[\ln (x+1)-\ln x] d x \\
& =\frac{\pi}{2}[(x+1) \ln (x+1)-x \ln x]_{x=0}^{x=1}=\pi \ln 2 .
\end{aligned}
$$

www.MATHVN.com - Anh Quang Le, PhD

Chapter 12

Some More Real Analysis Problems

Problem 130

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive. Consider a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{M} such that

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

Prove that

$$
\mu\left(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_{k}\right)=0 .
$$

Hint:
Let $B_{n}=\bigcup_{k \geq n} A_{k}$. Then $\left(B_{n}\right)$ is a decreasing sequence in \mathcal{M} with

$$
\mu\left(B_{1}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

Problem 131

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive.
Prove that (X, \mathcal{M}, μ) is σ-finite if and only if there exists a function $f \in L^{1}(X)$ and $f(x)>0, \forall x \in X$.

www.MATHVN.com - Anh Quang Le, PhD

Hint:

- Consider the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{\mathbf{1}_{X_{n}}(x)}{2^{n}\left[\mu\left(X_{n}\right)+1\right]} .
$$

It is clear that $f(x)>0, \forall x \in X$. Just show that f is integrable on X.

- Conversely, suppose that there exists $f \in L^{1}(X)$ and $f(x)>0, \forall x \in X$. For every $n \in \mathbb{N}$ set

$$
X_{n}=\left\{x \in X: f(x)>\frac{1}{n+1}\right\}
$$

Show that

$$
\bigcup_{n=1}^{\infty} X_{n}=X \text { and } \mu\left(X_{n}\right) \leq(n+1) \int_{X} f d \mu
$$

Problem 132

Let (X, \mathcal{M}, μ) be a measure space where the measure μ is positive. Let $f: X \rightarrow$ $\overline{\mathbb{R}}_{+}$be a measurable function such that $\int_{X} f d \mu<\infty$.
(a) Let $N=\{x \in X: f(x)=\infty\}$. Show that $N \in \mathcal{M}$ and $\mu(N)=0$.
(b) Given any $\varepsilon>0$, show that there exists $\alpha>0$ such that

$$
\int_{E} f d \mu<\varepsilon \text { for any } E \in \mathcal{M} \text { with } \mu(E) \leq \alpha
$$

Hint:

(a) $N=f^{-1}(\{\infty\})$ and $\{\infty\}$ is closed.

For every $n \in \mathbb{N}, n \mathbf{1}_{N} \leq f$.
(b) Write

$$
0 \leq \int_{E} f d \mu=\int_{E \cap N^{c}} f d \mu
$$

For every $n \in \mathbb{N}$ set $g_{n}:=f \mathbf{1}_{f>n} f \mathbf{1}_{N^{c}}$. Show that $g_{n}(x) \rightarrow 0$ for all $x \in X$.

Problem 133

Let $\varepsilon>0$ be arbitrary. Construct an open set $\Omega \subset \mathbb{R}$ which is dense in \mathbb{R} and such that $\mu_{L}(\Omega)<\varepsilon$.

Hint:

Write $\mathbb{Q}=\left\{x_{1}, x_{2}, \ldots\right\}$. For each $n \in \mathbb{N}$ let

$$
I_{n}:=\left(x_{n}-\frac{\varepsilon}{2^{n+2}}, x_{n}+\frac{\varepsilon}{2^{n+2}}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Then the I_{n} 's are open and $\Omega:=\bigcup_{n=1}^{\infty} I_{n} \supset \mathbb{Q}$.

Problem 134

Let (X, \mathcal{M}, μ) be a measure space. Suppose μ is positive and $\mu(X)=1$ (so (X, \mathcal{M}, μ) is a probability space). Consider the family

$$
\mathcal{T}:=\{A \in \mathcal{M}: \mu(A)=0 \text { or } \mu(A)=1\} .
$$

Show that \mathcal{T} is a σ-algebra.

Hint:

Let $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{M}$. Let $A=\bigcup_{n \in \mathbb{N}} A_{n}$.
If $\mu(A)=0$, then $A \in \mathcal{T}$.
If $\mu\left(A_{n_{0}}\right)=1$ for some $n_{0} \in \mathbb{N}$, then

$$
1=\mu\left(A_{n_{0}}\right) \leq \mu(A) \leq \mu(X)=1
$$

Problem 135

For every $n \in \mathbb{N}$, consider the functions f_{n} and g_{n} defined on \mathbb{R} by

$$
\begin{aligned}
& f_{n}(x)=\frac{n^{\alpha}}{(|x|+n)^{\beta}} \text { where } \alpha, \beta \in \mathbb{R} \text { and } \beta>1 \\
& g_{n}(x)=n^{\gamma} e^{-n|x|} \text { where } \gamma \in \mathbb{R} .
\end{aligned}
$$

(a) Show that $f_{n} \in L^{p}(\mathbb{R})$ and compute $\left\|f_{n}\right\|_{p}$ for $1 \leq p \leq \infty$.
(b) Show that $g_{n} \in L^{p}(\mathbb{R})$ and compute $\left\|g_{n}\right\|_{p}$ for $1 \leq p \leq \infty$.
(c) Use (a) and (b) to show that, for $1 \leq p<q \leq \infty$, the topologies induced on $L^{p} \cap L^{q}$ by L^{p} and L^{q} are not comparable.

Hint:

(a)

- For $1 \leq p<\infty$ we have

$$
\left\|f_{n}\right\|_{p}=2^{\frac{1}{p}}(\beta p-1)^{-\frac{1}{p}} n^{\alpha-\beta+\frac{1}{p}} .
$$

- For $p=\infty$ we have

$$
\left\|f_{n}\right\|_{\infty}=\lim _{p \rightarrow \infty}\left\|f_{n}\right\|_{p}=n^{\alpha-\beta} .
$$

(b)

- For $p=\infty$ we have

$$
\left\|g_{n}\right\|_{\infty}=n^{\gamma} .
$$

www.MATHVN.com - Anh Quang Le, PhD

- For $1 \leq p<\infty$ we have

$$
\left\|g_{n}\right\|_{p}=2^{\frac{1}{p}} n^{\gamma-\frac{1}{p}} p^{-\frac{1}{p}} .
$$

(c) If the topologies induced on $L^{p} \cap L^{q}$ by L^{p} and L^{q} are comparable, then, for $\varphi_{n} \in L^{p} \cap L^{q}$, we must have
(*) $\quad \lim _{n \rightarrow \infty}\left\|\varphi_{n}\right\|_{p}=0 \Longrightarrow \lim _{n \rightarrow \infty}\left\|\varphi_{n}\right\|_{q}=0$.
Find an example which shows that the above assumption is not true. For example:

$$
\varphi_{n}=n^{-\gamma+\frac{1}{q}} g_{n}
$$

Problem 136

(a) Show that any non-empty open set in \mathbb{R}^{n} has strictly positive Lebesgue measure.
(b) Is the assertion in (a) true for closed sets in \mathbb{R}^{n} ?

Hint:

(a) For any $\varepsilon>0$, consider the open ball in \mathbb{R}^{n}

$$
B_{2 \varepsilon}(0)=\left\{x=\left(x_{1}, . ., x_{n}\right): x_{1}^{2}+\ldots+x_{n}^{2}<4 \varepsilon^{2}\right\} .
$$

For each $n \in \mathbb{R}$, let $I_{n}(0):=\left[-\frac{\varepsilon}{\sqrt{n}}, \frac{\varepsilon}{\sqrt{k}}\right)$. Show that

$$
I_{\varepsilon}(0):=\underbrace{I_{n}(0) \times \ldots \times I_{n}(0)}_{n} \subset B_{2 \varepsilon}(0) .
$$

(b) No.

Problem 137

(a) Construct an open and unbounded set in \mathbb{R} with finite and strictly positive Lebesgue measure.
(b) Construct an open, unbounded and connected set in \mathbb{R}^{2} with finite and strictly positive Lebesgue measure.
(c) Can we find an open, unbounded and connected set in \mathbb{R} with finite and strictly positive Lebesgue measure?

Hint:

(a) For each $k=0,1,2, \ldots$ let

$$
I_{k}=\left(k-\frac{1}{2^{k}}, k+\frac{1}{2^{k}}\right) .
$$

www.MATHVN.com - Anh Quang Le, PhD

Then show that $I=\bigcup_{k=0}^{\infty} I_{k}$ satisfies the question.
(b) For each $k=1,2, \ldots$ let

$$
B_{k}=\left(-\frac{1}{2^{k}}, \frac{1}{2^{k}}\right) \times(-k, k)
$$

Then show that $B=\bigcup_{k=0}^{\infty} B_{k}$ satisfies the question.
(c) No. Why?

Problem 138

Given a measure space (X, \mathcal{A}, μ). A sequence $\left(f_{n}\right)$ of real-valued measurable functions on a set $D \in \mathcal{A}$ is said to be a Cauchy sequence in measure if given any $\varepsilon>0$, there is an N such that for all $n, m \geq N$ we have

$$
\mu\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}<\varepsilon .
$$

(a) Show that if $f_{n} \xrightarrow{\mu} f$ on D, then $\left(f_{n}\right)$ is a Cauchy sequence in measure on D. (b) Show that if $\left(f_{n}\right)$ is a Cauchy sequence in measure, then there is a function f to which the sequence $\left(f_{n}\right)$ converges in measure.

Hint:

(a) For any $\varepsilon>0$, there exists $N>0$ such that for $n, m \geq N$ we have

$$
\mu\left\{D:\left|f_{m}-f_{n}\right| \geq \varepsilon\right\} \leq \mu\left\{D:\left|f_{m}-f\right| \geq \frac{\varepsilon}{2}\right\}+\mu\left\{D:\left|f_{n}-f\right| \geq \frac{\varepsilon}{2}\right\} .
$$

(b) By definition,

$$
\text { for } \delta=\frac{1}{2}, \exists n_{1} \in \mathbb{N}: \mu\left\{D:\left|f_{n_{1}+p}-f_{n_{1}}\right| \geq \frac{1}{2}\right\}<\frac{1}{2} \text { for all } p \in \mathbb{N} \text {. }
$$

In general,

$$
\text { for } \delta=\frac{1}{2^{k}}, \exists n_{k} \in \mathbb{N}, n_{k}>n_{k-1}: \mu\left\{D:\left|f_{n_{k}+p}-f_{n_{k}}\right| \geq \frac{1}{2^{k}}\right\}<\frac{1}{2^{k}} \text { for all } p \in \mathbb{N} .
$$

Since $n_{k+1}=n_{k}+p$ for some $p \in \mathbb{N}$, so we have

$$
\mu\left\{D:\left|f_{n_{k+1}}-f_{n_{k}}\right| \geq \frac{1}{2^{k}}\right\}<\frac{1}{2^{k}} \text { for } k \in \mathbb{N} .
$$

Let $g_{k}=f_{n_{k}}$. Show that $\left(g_{k}\right)$ converges a.e. on D. Let $D_{c}:=\left\{x \in D: \lim _{k \rightarrow \infty} g_{k}(x) \in \mathbb{R}\right\}$. Define f by $f(x)=\lim _{k \rightarrow \infty} g_{k}(x)$ for $x \in D_{c}$ and $f(x)=0$ for $x \in D \backslash D_{c}$. Then show that $g_{k} \xrightarrow{\mu} f$ on D. Finally show that $f_{n} \xrightarrow{\mu} f$ on D.

Problem 139

Check whether the following functions are Lebesgue integrable :
(a) $u(x)=\frac{1}{x}, x \in[1, \infty)$.
(b) $v(x)=\frac{1}{\sqrt{x}}, x \in(0,1]$.

Hint:

(a) $u(x)$ is NOT Lebesgue integrable on $[1, \infty)$.

$$
\int_{[1, \infty)} u(x) d \mu_{L}(x)=\lim _{n \rightarrow \infty} \int \frac{1}{x} \mathbf{1}_{[1, n)}(x) d \mu_{L}(x)=\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x} d x
$$

(b) $v(x)$ is Lebesgue integrable on $(0,1]$.

We can write

$$
v(x)=\frac{1}{\sqrt{x}}, x \in(0,1]=\frac{1}{\sqrt{x}} \mathbf{1}_{(0,1]}(x)=\sup _{n} \frac{1}{\sqrt{x}} \mathbf{1}_{\left[\frac{1}{n}, 1\right]}(x)
$$

Use the Monotone Convergence Theorem for the sequence $\left(\frac{1}{\sqrt{x}} \mathbf{1}_{\left[\frac{1}{n}, 1\right]}\right)_{n \in \mathbb{N}}$.

www.MATHVN.com - Anh Quang Le, PhD

Bibliography

[1] Wheeden, L.R.; Zygmund, A. Measure and Integral. Marcel Dekker. New York, 1977.
[2] Folland. G.B. Real Analysis. John Wiley and Sons. New York, 1985.
[3] Rudin. W. Real and Complex Analysis. Third edition. McGraw-Hill, Inc. New York, 1987.
[4] Royden. H.L. Real Analysis. Third edition. Prentice Hall. NJ, 1988.
[5] Rudin. W Functional Analysis. McGraw-Hill, Inc. New York, 1991.
[6] Hunter. J.K.; Nachtergaele. B. Applied Analysis. World Scientific. NJ, 2001.
[7] Yeh, J. Real Analysis. Theory of measure and integration. Second edition. World Scientific. NJ, 2006.

[^0]: ${ }^{1}$ Recall that for (Lebesgue) measurable set $A, \mu_{L}^{*}(A)=\mu_{L}(A)$.

[^1]: ${ }^{1}$ See Problem 11b. We have

 $$
 \mu\left(\limsup _{n \rightarrow \infty} E_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(E_{n}\right) .
 $$

[^2]: ${ }^{1}$ This is called the uniform continuity of the integral with respect to the measure μ.

[^3]: ${ }^{2}$ In fact, for $a, b \geq 0$ and $1 \leq p<\infty$ we have

 $$
 (a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right) .
 $$

