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NOTATIONS

A(X): The o-algebra of subsets of X.

(X, A(X), ) : The measure space on X.

B(X): The o-algebra of Borel sets in a topological space X.
My : The o-algebra of Lebesgue measurable sets in R.

(R, My, pur): The Lebesgue measure space on R.

pr: The Lebesgue measure on R.

w1y The Lebesgue outer measure on R.

1z or xg: The characteristic function of the set E.
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Chapter 1

Measure on a o-Algebra of Sets

1. Limits of sequences of sets

Definition 1 Let (A,)nen be a sequence of subsets of a set X.

(a) We say that (A,,) is increasing if A, C Apt1 for all n € N, and decreasing if A, D Anq1 for
alln € N.

(b) For an increasing sequence (A,), we define

lim A, =

n—oo

8
-
3

3
Il
-

For a decreasing sequence (A,), we define

DL

A,

lim A, :=
n—oo

n=1

Definition 2 For any sequence (A,) of subsets of a set X, we define

liminf A, == | J (1) Ax

neNk>n
limsup A, := ﬂ U Ap.
n—ee neNk>n

Proposition 1 Let (4,,) be a sequence of subsets of a set X. Then
(1)  liminfA, ={z € X: z € A, for dall but finitely many n € N}.

(i4) limsup A, ={x € X : x € A, for infinitely many n € N}.

n—oo

(#i1)  liminf A,, C limsup A,.

n—oo N—00

2. o-algebra of sets
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6 CHAPTER 1. MEASURE ON A 0-ALGEBRA OF SETS

Definition 3 (o-algebra)
Let X be an arbitrary set. A collection A of subsets of X is called an algebra if it satisfies the
following conditions:

1. X e A

2. Ac A= A°c A

3. ABe A= AUB e A
An algebra A of a set X is called a o-algebra if it satisfies the additional condition:

4. Ape A, VneN= A,enelN.

neN

Definition 4 (Borel o-algebra)
Let (X,0) be a topological space. We call the Borel o-algebra B(X) the smallest o-algebra of X
containing O.

It is evident that open sets and closed sets in X are Borel sets.

3. Measure on a c-algebra

Definition 5 (Measure)

Let A be a o-algebra of subsets of X. A set function p defined on A is called a measure if it
satisfies the following conditions:

u(E) € [0,00] for every E € A.

(@) =0.

(En)nEN - ~A; distint = W (UnGN En) = ZnGN M(En)

=

1.
2.
3.

Notice that if E € A such that p(E) = 0, then E is called a null set. If any subset Ey of a null set
E is also a null set, then the measure space (X, A, ) is called complete.

Proposition 2 (Properties of a measure)

A measure p on a o-algebra A of subsets of X has the following properties:

(1) Finite additivity: (Ey, Es, ..., E,) C A, disjoint = p(Uj—; Ex) = Y peq (Ek).
(2) Monotonicity: E1,Es € A, E1 C Ey = u(E1) < m(Es).

(3) FEi,Ey € A, FEi C Es, ,LL(El) <00 — ‘[L(EQ \El) = ,LL(EQ) — ,LL(El)

(4) Countable subadditivity: (E,) C A= pu (U, en En) <X nen 14(En).

Definition 6 (Finite, o-finite measure)
Let (X, A, ) be a measure space.

1. p is called finite if 1(X) < oo.
2. p is called o-finite if there exists a sequence (E,,) of subsets of X such that

X = U E, and p(E,) < oo, ¥n € N.
neN
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4. Outer measures

Definition 7 (Outer measure)

Let X be a set. A set function p* defined on the o-algebra P(X) of all subsets of X is called an
outer measure on X if it satisfies the following conditions:

(i) p*(E) € [0,00] for every E € P(X).

(ii) p*(0) =0.
(i) E,F € P(X), ECF = p*(E) < p*(F).
(iv) countable subadditivity:

(En)nen € P(X), 1* (U E) < S W ).

neN neN

Definition 8 (Caratheodory condition)
We say that E € P(X) is pu*-measurable if it satisfies the Caratheodory condition:

pw(A)=p (AN E)+ pu* (AN E®) for every A€ P(X).
We write M(p*) for the collection of all p*-measurable E € P(X). Then M(u*) is a o-algebra.
Proposition 3 (Properties of pu*)

(a) If E1, Ey € M(p*), then E1 U Ey € M(p*).
(b) u* is additive on M(p*), that is,

FEi,Ey € M(u*), FiNEkE, =0 — ,[L*(El UEQ) = /L*(El) +,LL*(E2).

Xk kk
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8 CHAPTER 1. MEASURE ON A 0-ALGEBRA OF SETS

Problem 1
Let A be a collection of subsets of a set X with the following properties:

1. X € A.

2. ABe A= A\Be A

Show that A is an algebra.

Solution

(i) X € A.

i) Ac A=A =X\Aec A (by?2).

(i) ABe A=ANB=A\B°c€ A since B € A (by (ii)).
Since A°,B°€ A, (AUB)*=A°NB°€ A. Thus, AUBe A. &

Problem 2

(a) Show that if (A,)nen s an increasing sequence of algebras of subsets of a set
X, then |,y An is an algebra of subsets of X.

(b) Show by example that even if A, in (a) is a o-algebra for every n € N, the
union still may not be a o-algebra.

Solution
(a) Let A=,y An. We show that A is an algebra.

(i) Since X € A4,, Vne N, so X € A

(ii) Let A € A. Then A € A, for some n. And so A° € A, ( since A, is an
algebra). Thus, A° € A.

(iii) Suppose A, B € A. We shall show AU B € A.
Since {A,} is increasing, i.e., A1 C Ay C ... and A, B € |J,o An, there is
some ng € N such that A, B € Ay. Thus, AU B € A,. Hence, AU B € A.

(b) Let X =N, A,, = the family of all subsets of {1,2,...,n} and their complements.
Clearly, A, is a o-algebra and A; C A, C .... However, (J, oy An is the family of all
finite and co-finite subsets of N, which is not a o-algebra. |
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Problem 3

Let X be an arbitrary infinite set. We say that a subset A of X is co-finite if its
complement A€ is a finite subset of X. Let A consists of all the finite and the
co-finite subsets of a set X.

(a) Show that A is an algebra of subsets of X.

(b) Show that A is a o-algebra if and only if X is a finite set.

Solution

(a)
(i) X € A since X is co-finite.

(i) Let A € A. If A is finite then A€ is co-finite, so A° € A. If A co-finite then A°
is finite, so A° € A. In both cases,

Ac A= A° e A

(iii) Let A, B € A. We shall show AU B € A.
If A and B are finite, then AU B is finite, so AU B € A. Otherwise, assume
that A is co-finite, then A U B is co-finite, so AU B € A. In both cases,

A Be A= AUBecA.

(b) If X is finite then A = P(X), which is a o-algebra.

To show the reserve, i.e., if A is a o-algebra then X is finite, we assume that X
is infinite. So we can find an infinite sequence (aq, as, ...) of distinct elements of X
such that X \ {a1,as,...} is infinite. Let A, = {a,}. Then A, € A for any n € N,
while (J,, .y An is neither finite nor co-finite. So (J,cy An € A. Thus, A is not a
o-algebra: a contradiction! |

Note:
For an arbitrary collection C of subsets of a set X, we write ¢(C) for the smallest
o-algebra of subsets of X containing C and call it the o-algebra generated by C.

Problem 4

Let C be an arbitrary collection of subsets of a set X. Show that for a given
A € 0(C), there exists a countable sub-collection C4 of C depending on A such
that A € o(Ca). (We say that every member of o(C) is countable generated).
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10 CHAPTER 1. MEASURE ON A 0-ALGEBRA OF SETS

Solution

Denote by B the family of all subsets A of X for which there exists a countable
sub-collection C4 of C such that A € o(C4). We claim that B is a o-algebra and
that C C B.

The second claim is clear, since A € o({A}) for any A € C. To prove the first one,
we have to verify that B satisfies the definition of a o-algebra.

(i) Clearly, X € B.

(i) If A € B then A € o(Ca4) for some countable family C4 C o(C). Then
Ac € 0(Ca), so A° € B.

(iii) Suppose {4, }nen C B. Then A, € 0(C4,) for some countable family C4, C C.
Let £ = [J,,en Ca, then & is countable and £ C C and A,, € o(€) for all n € N.
By definition of o-algebra, | J, .y An € 0(€), and so J, .y An € B.

Thus, B is a o-algebra of subsets of X and £ C B. Hence,
a(&) C B.

By definition of B, this implies that for every A € o(C) there exists a countable
ECCsuchthat Aeco(f). N

Problem 5
Let v a set function defined on a o-algebra A of subsets of X. Show that it 7 is
additive and countably subadditive on A, then it is countably additive on A.

Solution
We first show that the additivity of v implies its monotonicity. Indeed, let A, B € A
with A C B. Then

B=AU(B\A) and AN(B\A) =2.
Since 7y is additive, we get
V(B) =(A) +v(B\ 4) > 7(A).

Now let (E,) be a disjoint sequence in A. For every N € N, by the monotonicity
and the additivity of v, we have

Y (U E) > 5 (LNJ E) - gw;n).

neN n=1
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Since this holds for every N € N, so we have

(@) 7 (U En) > A(En).

On the other hand, by the countable subadditivity of v, we have
@ ~(Us) <X
neN neN
From (7) and (i), it follows that
neN neN

This proves the countable additivity of v. W

Problem 6
Let X be an infinite set and A be the algebra consisting of the finite and co-finite
subsets of X (cf. Prob.3). Define a set function p on A by setting for every
Ac A: O if A s finit

if A is finite

pA) = { 1 if A is co-finite.

(a) Show that p is additive.
(b) Show that when X is countably infinite, p is not additive.
(c) Show that when X is countably infinite, then X is the limit of an increasing
sequence {A, : n € N} in A with u(A,) =0 for every n € N, but u(X) = 1.
(d) Show that when X is uncountably, the p is countably additive.

Solution

(a) Suppose A,B € Aand ANB =0 (ie.,, AC B and B C A°).

If A is co-finite then B is finite (since B C A¢). So AU B is co-finite. We have
w(AUB) =1, u(A)=1and u(B)=0. Hence, (AU B) = u(A) + u(B).

If B is co-finite then A is finite (since A C B¢). So AU B is co-finite, and we have
the same result. Thus, p is additive.

(b) Suppose X is countably infinite. We can then put X under this form: X =
{z1,29,...}, z; #x; if i #j. Let A, = {z,,}. Then the family {A, },en is disjoint
and j(Ay,) = 0 for every n € N. So >~ _u(A,) = 0. On the other hand, we have

www.MathVn.com - Math Vietnam
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12 CHAPTER 1. MEASURE ON A 0-ALGEBRA OF SETS

UneN A, =X, and pu(X) = 1. Thus,

p (U An> # > (A,

neN neN

Hence, p is not additive.
(c) Suppose X is countably infinite, and X = {xq,22,...}, x; #z; if i # j asin
(b). Let B,, = {z1,x9,...,x,}. Then p(B,) = 0 for every n € N, and the sequence
(By)nen is increasing. Moreover,

lim B, = | J B, =X and p(X)=1.

n—o00
neN

(d) Suppose X is uncountably. Consider the family of disjoint sets {C), },en in A.
Suppose C' = (J,,en Cn € A. We first claim: At most one of the C),’s can be co-finite.
Indeed, assume there are two elements C,, and C,, of the family are co-finite. Since
Cy C C¢ so C, must be finite: a contradiction.

Suppose C,,, is the co-finite set. Then since C' O C},,, C' is also co-finite. Therefore,

wC) =p (U Cn) =1

neN

On the other hand, we have
w(Cpo) =1 and p(C,) =0 for n # ny.

Thus,

s(Ue)-Tuew.

neN neN

If all C,, are finite then |,  C,, is finite, so we have

neN

0=p (U 0n> => wC,). =

neN neN

Problem 7
Let (X, A, n) be a measure space. Show that for any A, B € A, we have the
equality:

1(AU B) + w(AN B) = pu(A) + pu(B).
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Solution
If u(A) = oo or u(B) = oo, then the equality is clear. Suppose p(A) and u(B) are
finite. We have

AUB=(A\B)U(ANB)U(B\ A),
A=(A\B)U(ANB)
B=(B\A)U(ANB).

Notice that in these decompositions, sets are disjoint. So we have

(1.1) (AU B) = u(A\ B) + p(AN B) + p(B\ A),
(1.2) 1(A) + pu(B) = 2u(AN B) + p(A\ B) + u(B\ A).

From (1.1) and (1.2) we obtain
(AU B) = p(A) — u(B) = —u(AN B).

The equality is proved. [

Problem 8
The symmetry difference of A, B € P(X) is defined by

AAB=(A\B)U(B\ A).
(a) Prove that
VA,B,C e P(X), AAOWBC (AAC)U(C A B).
(b) Let (X, A, 1) be a measure space. Show that

VA,B,C e A, nf(AA B) < u(AAC)+ u(C A B).

Solution
(a) Let z € AA B. Suppose z € A\ B. f r € C'thenx € C\ Bsox € C A B. If
x ¢ C,thenx € A\ C,s0ox € AAC. In both cases, we have

t€AAB=zc(AAC)U(CAB).

The case © € B\ A is dealt with the same way.
(b) Use subadditivity of p and (a). W
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Problem 9
Let X be an infinite set and p the counting measure on the o-algebra A = P(X).
Show that there ezists a decreasing sequence (Ey)nen in A such that

lim £, =9 with lim u(E,) # 0.

n—oo n—oo

Solution
Since X is a infinite set, we can find an countably infinite set {xy, zo,...} C X with
x; # xjif i # j. Let E, = {2, Znt1,...}. Then (E,),en is a decreasing sequence in
A with

lim £, =@ and lim u(E,)=0. W

n—oo n—oo

Problem 10 (Monotone sequence of measurable sets)
Let (X, A, ) be a measure space, and (E,) be a monotone sequence in A.
(a) If (E,) is increasing, show that

lim p(E,) = p(lim E,).

n—oo n—oo

(b) If (E,) is decreasing, show that

lim p(E,) = p(lim E,),

n—~oo n—oo

provided that there is a set A € A satisfying u(A) < oo and A D FEj.

Solution

Recall that if (£,) is increasing then lim, .. £, = U,cny En € A, and if (E,) is
decreasing then lim, ... £, = (),cy £n € A. Note also that if (£,) is a monotone
sequence in A, then (p(E,)) is a monotone sequence in [0, co] by the monotonicity
of 1, so that lim,, . u(E,) exists in [0, oo].

(a) Suppose (E,) is increasing. Then the sequence (u(E,)) is also increasing.
Consider the first case where p(E,,) = oo for some E,,. In this case we have
lim,, o0 (E,) = co. On the other hand,

Eny C | En = lim B, = p(lim E,) > pu(Ey,) = oo.
neN
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Thus
p(lim E,) =oco0 = lim u(E,).

n—oo n—oo

Consider the next case where u(FE,) < oo for all n € N. Let Fy = @, then consider
the disjoint sequence (F},) in A defined by F,, = E,,\ E,,_1 for all n € N. It is evident
that

Then we have

e (U7) ()

= ZU(FH) = Z,U(En \ En-1)
= D> [(Bn) = u(Ep-)]

= lim > [(By) = n(By)]
b1

= lim [u(E,) — p(Eo)] = lim w(E,). O

n—o0 n—o0

(b) Suppose (E,) is decreasing and assume the existence of a containing set A with
finite measure. Define a disjoint sequence (G,,) in A by setting G,, = E,, \ E,;1 for
all n € N. We claim that

1) E\N()E.=JGn

neN neN

To show this, let x € Ey \ (),cy En- Then # € Ey and o ¢ (), By Since the
sequence (E,) is decreasing, there exists the first set E, 1 in the sequence not
containing x. Then

¥ € Epy \ Epgy1 = Gog =z € | J G-

neN

Conversely, if € |J,,cyy Gn, then z € Gy, = Ep, \ Epoq1 for some ng € N. Now
x € E,, C Ey. Since ¢ Ey,11, we have x ¢ ),y En- Thus 2 € By \ (,cn En-
Hence (1) is proved.
Now by (1) we have

neN neN

(2) ,u(El\ﬂEn>:u<UGn>.
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Since 1 (MNen En) < u(Er) < p(A) < oo, we have

(3) n (El\ N En> = (B —p <ﬂ En)

neN neN
— (B — p(lim E,).

n—oo

By the countable additivity of u, we have

4) n <U Gn) = ZM(Gn) = ZM(ETL \ Eni1)

= D [u(En) = p(Eni)]

= JLIEOZ[M(EQ — 1(By1)]
k=1
= lim [p(Er) — p(Epsa)]
= p(E) = T pu(Eppq).
Substituting (3) and (4) in (2), we have

p(E) = p( lim By) = p(Ey) = T p(Epg).

n—oo

Since p(E1) < oo, we have

p(lim E,) = lim u(E,). W

n—oo n—oo
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Problem 11 (Fatou’s lemma for )
Let (X, A, ) be a measure space, and (E,) be a sequence in A.
(a) Show that
u(lign gf E,) < lirllrn ioI.}pr(En).
(b) If there exists A € A with E,, C A and p(A) < oo for every n € N, then
show that

p(limsup E,) > limsup p(E,).

n—oo n—oo

Solution
(a) Recall that

lim inf E,, = U E:= lim () Ex.

neN k>n k>n

by the fact that (), Ex)
we have

e is an increasing sequence in A. Then by Problem 9a

(*)  p(liminf E,) = lim p (ﬂ Ek> = liminf p (ﬂ Ek) ,

k>n k>n

since the limit of a sequence, if it exists, is equal to the limit inferior of the sequence.
Since (s, Ex C E,, we have pu (s, Ex) < p(E,) for every n € N. This implies
that -

lim inf p <ﬂ Ek> < liminf u(E,).

n—00 Nn—00
k>n

Thus by (*) we obtain

/L(lim inf En) < liminf u(E,).

(b) Now
limsup F,, = m U E, = le U Ey,

n—oo neNk>n k>n

by the fact that (Uan Ek)nEN is an decreasing sequence in A. Since E, C A for all
n € N, we have Uan E), C A for all n € N. Thus by Problem 9b we have

u(limsupEn) = i (hm U Ek> = lim pu <U Ek> )

n—ee k>n k>n
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Now
lim p (U Ek> = limsup p (U Ek> ,
nee k>n n—oo k>n

since the limit of a sequence, if it exists, is equal to the limit superior of the sequence.
Then by U,~,, Ex O E, we have

k>n

Thus
lim sup p (U Ek) > limsup pu(E,).

It follows that
p(limsup E,) > limsup p(E,). W

n—oo n—oo

Problem 12

Let p* be an outer measure on a set X. Show that the following two conditions
are equivalent:

(i) p* is additive on P(X).

(ii) Every element of P(X) is u*-measurable, that is, M(u*) = P(X).

Solution
e Suppose p* is additive on P(X). Let E € P(X). Then for any A € P(X),

A=(ANE)UANES and (ANE)N(ANE") =2.
By the additivity of u* on P(X), we have
p(A) = p (AN E) + p (AN E").

This show that E satisfies the Carathéodory condition. Hence E € M(u*). So
P(X) C M(u*). But by definition, M(u*) C P(X). Thus

M) = P(X).

e Conversely, suppose M(u*) = P(X). Since p* is additive on M(u*) by Proposi-
tion 3, so p* is additive on P(X). [ |
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Problem 13

Let p* be an outer measure on a set X.

(a) Show that the restriction p of p* on the o-algebra M(p*) is a measure on
M(p).

(b) Show that if p* is additive on P(X), then it is countably additive on P(X).

Solution

(a) By definition, p* is countably subadditive on P(X). Its restriction p on M(u*)
is countably subadditive on M(u*). By Proposition 3b, p* is additive on M (u*).
Therefore, by Problem 5, p* is countably additive on M(u*). Thus, p* is a measure
on M(u*). But p is the restriction of p* on M(p*), so we can say that p is a
measure on M ().

(b) If p* is additive on P(X), then by Problem 11, M(u*) = P(X). So u* is a
measure on P(X) (Problem 5). In particular, u* is countably additive on P(X). W
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Chapter 2
Lebesgue Measure on R

1. Lebesgue outer measure on R

Definition 9 (Outer measure)
Lebesgue outer measure on R is a set function pf : P(R) — [0,00] defined by

ui(A) = inf {Zﬂ([k) t AC U Iy, I, is open interval in R} .
k=1 k=1

Proposition 4 (Properties of u} )

wi (A) =0 if A is at most countable.

Monotonicity: A C B = u}(A) < ui(B).

Translation invariant: pi (A+x) = u}(A), Vo € R.
Countable subadditivity: pj (Uy—q An) < D00, 1h(Ay).

Null set: 155(4) = 0 = i (AUB) = g (B) and i (B\ A) = i3 (B)
for all B € P(R).

For any interval I C R, p} (I)=¢(I).

GRS e =

)

7. Regularity:

VE € PR), € >0, 30 open setin R: O DE and up(E) <pr(0) <pi(E)+e.
2. Measurable sets and Lebesgue measure on R

Definition 10 (Carathéodory condition)
A set E C R is said to be Lebesgue measurable (or ur-measurable, or measurable) if, for all A C R,
we have

3. (A) = i3 (AN E) + i (AN E°).
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Since p} is subadditive, the sufficient condition for Carathéodory condition is
Wi (A) > 15 (AN E) + 1} (AN E°).

The family of all measurable sets is denoted by M. We can see that My is a o-algebra. The
restriction of pj on My, is denoted by py, and is called Lebesgue measure.

Proposition 5 (Properties of )

1. (R,Myp,pur) is a complete measure space.

2. (R, My, ur) is o-finite measure space.

3. Br C My, that is, every Borel set is measurable.
ur(O) > 0 for every nonempty open set in R.

(R, My, p1) is translation invariant.

SR

(R, My, ) is positively homogeneous, that is,

ur(aFE) = lapn(E), Va eR, E € M.

Note on F, and Gg sets:

Let (X,7) be a topological space.

e A subset F of X is called a F,-set if it is the union of countably many closed sets.

e A subset E of X is called a Gs-set if it is the intersection of countably many open sets.

o If F is a Gs-set then E° is a F,-set and vice versa. Every Gs-set is Borel set, so is every F,-set.

Xk ok

Problem 14
If E is a null set in (R, My, 1), prove that E€ is dense in R.

Solution
For every open interval I in R, pup(I) > 0 (property of Lebesgue measure). If
pur(E) = 0, then by the monotonicity of py, E cannot contain any open interval as
a subset. This implies that

E‘nNl=9o

for any open interval I in R. Thus E° is dense in R. [ |
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Problem 15
Prove that for every EE C R, there exists a Gs-set G C R such that

GDE and pi(G)=ui(E).

Solution
We use the regularity property of uj (Property 7).
For ¢ = %, n € N, there exists an open set O,, C R such that

1
On D E and p;(E) < pp(On) < i (E) + —.

- n

Let G = ﬂneN O,,. Then G is a Gg-set and G D E. Since G C O,, for every n € N,

we have
pr(E) < pp(G) < pp(0,) < p

This holds for every n € N, so we have

She

&

+
|

Therefore

Problem 16
Let E C R. Prove that the following statements are equivalent:
(i) E is (Lebesgue) measurable.

(iii) There exists a Gs-set G O E with p;(G\ E) = 0.

(ii) For every € > 0, there exists an open set O D E with uj (O \ E) < e.

Solution
e (i) = (ii) Suppose that E is measurable. Then

Ve>0,3openset O: ODE and pj(E) < u;(0) <pi(E)+e.

(1)

Since F is measurable, with O as a testing set in the Carathéodory condition satisfied

by E, we have

13(0) = Wi (O N E) + (0 N E) = i (E) + 13(0\ B),

www.MathVn.com - Math Vietnam

(2)



www.MATHVN.com - Anh Quang Le, PhD

24 CHAPTER 2. LEBESGUE MEASURE ON R

If i (FE) < oo, then from (1) and (2) we get

p1.(0) < pp(E) +e = p(0) — i (E) = pp(O\ E) < ¢

If ui (F) = o0, let B, = EN(n—1,n] for n € Z. Then (E,),ez is a disjoint sequence
in M, with
U En =L and ML(En) S ML((H - 17”]) =1
nez
Now, for every € > 0, there is an open set O,, such that
3

O, D E, and ur(0,\ E,) < ST

Wl

Let O = |J,,c7)On, then O is open and O D E, and

O\E = (7920,1) \ (gZEn> = (g()n) N (,LLGJZE">
IGHCRIREICS

c Jn\En).

ne”L

Then we have

pL(ONE) < (U(On\En)) <> Hi(On\ E)

nez ne”Z
1 ¢
< Z32|n\ €+2232n
neL neN
1 n 2
= —E€+ —-€=¢.
3 3

This shows that (i7) satisfies.

e (ii) = (iii) Assume that E satisfies (ii). Then for e = 1, n € N, there is an open
set O,, such that

1
O,D> E, and ur(0,\ E,) < = Vn € N.

Let G =[), ey On- Then G is a Gs-set containing E. Now

neN

1
GCO= pi(G\E) < pp(On\ E) < —, Vn € N.
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Thus pj (G \ E) = 0. This shows that E satisfies (7).
e (i1i) = (i) Assume that E satisfies (i77). Then there exists a Gs-set G such that
GDFE and uj(G\E)=0.

Now uj (G \ E) = 0 implies that G \ E is (Lebesgue) measurable. Since E C G,
we can write £ = G \ (G \ E). Then the fact that G and G \ F are (Lebesgue)
measurable implies that F is (Lebesgue) measurable. W

Problem 17(Similar problem)

Let E C R. Prove that the following statements are equivalent:

(i) E is (Lebesgue) measurable.

(ii) For every € > 0, there exists an closed set C C E with uj (E\ C) <e.
(iii) There exists a Fy-set F C E with p5(E\ F) =0.

Problem 18
Let Q be the set of all rational numbers in R. For any ¢ > 0, construct an open
set O C R such that

OD>Q and p;(0)<e.

Solution
Since Q is countable, we can write Q = {ry,r9,...}. For any € > 0, let

In:(rn— neN.

€
7).
Then I, is open and O = U;'Ozl I, is also open. We have, for every n € N, r, € [,.

Therefore O D Q.
Moreover,

105 (0) = wt (U In> < Y i)

2
- Z Qnil

n=1

o0

= 522%:5. |
n=1
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Problem 19

Let Q be the set of all rational numbers in R.

(a) Show that Q is a null set in (R, Bg, ur).

(b) Show that Q is a F,-set.

(¢) Show that there exists a Gs-set G such that G D Q and pur(G) = 0.
(d) Show that the set of all irrational numbers in R is a Gs-set.

Solution

(a) Since Q is countable, we can write Q = {ry,ry,...}. Each {r,}, n € N is closed,
so {r,} € Bg. Since Bg is a o-algebra,

Q= J{r} €B=.
n=1

Since pr({r,}) = 0, we have

(@ =S pu({ra}) = 0.

Thus, Q is a null set in (R, Bg, pr.).
(b) Since {r,} isclosed and Q=) " {r.}, Qisa F,-set.

(c) By (a), ur(Q) = 0. This implies that, for every n € N, there exists an open set
G, such that

1
G, DQ and ur(G,) < -
If G=()_,G, then G isa Gs-set and G D Q. Furthermore,

1
wr(G) < up(Gp) < - Vn € N.

This implies that pz(G) = 0.

(d) By (b), Q is a F,-set, so R\ Q, the set of all irrational numbers in R, is a
Gs-set. N

Problem 20

Let E € My with pup(E) > 0. Prove that for every a € (0,1), there exists a
finite open interval I such that

app(I) < p(ENT) < pr(l).
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Solution

e Consider first the case where 0 < p(E) < co. For any a € (0,1), set £ =1+ a.
Since a > 0, 0 < € = aur(F) < oo. By the regularity property of uj (Property 7),
there exists an open set O D E such that!

p(0) < pe(E) + apr(E) = (1 + e (B) = () < 0. (i)

Now since O is an open set in R, it is union of a disjoint sequence (I,) of open
intervals in R:

O= L= pe(0) =) pi(l). (id)

neN neN

Since E C O, we have

neN neN

pp(E) = p(ENO) = uy (E nJ In> => p(ENL). (i)
From (4), (¢i) and (4i7) it follows that
S (i) < 23 (B L),

neN neN

Note that all terms in this inequality are positive, so that there exists at least one

ng € N such that

1
ML([no) < EML(EH Ino)'

Since pr,(O) is finite, all intervals I,, are finite intervals in R. Let I := [,,,, then [ is
a finite open interval satisfying conditions:

apr(l) < p(ENT) < pr(l).

e Now consider that case u(F) = co. By the o-finiteness of the Lebesgue measure
space, there exists a measurable subset Ey of E such that 0 < pp(Fy) < oco. Then
using the first part of the solution, we obtain

apr(l) < pr(EoNI) < p(ENI) <pp(l). W

'Recall that for (Lebesgue) measurable set A, uj(A) = pr(A).
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Problem 21
Let f be a real-valued function on (a,b) such that f’ exists and satisfies

|f'(z)] <M forall x € (a,b) and for some M > 0.

Show that for every E C (a,b) we have

pr(f(E) < Mpp(E).

Solution
If M =0 then f'(z) =0, Vx € (a,b). Hence, f(x) = yy, Yz € (a,b). Thus, for any
E C (a,b) we have

pi(f(E)) =0.
The inequality holds. Suppose M > 0. For all z,y € (a,b), by the Mean Value
Theorem, we have

|f(x) = fy)l = |z —=yllf'(c)], forsome c € (a,b)
< Mz —y[. ()

By definition of the outer measure, for any £ C (a,b) we have
i (B) = inf 3 (b — ),
n=1
where {I,, = (an,b,), n € N} is a covering class of E. By (*) we have

Z |f(bn) - f(an)‘ < MZ |bn - GN|

< Minfz b, — ay|
n=1

< Muyuj(E).

Infimum takes over all covering classes of E. Thus,

pi(f(E) =inf ) |f(ba) = flan)] < Mpy(E). ®
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Problem 22

(a) Let E C R. Show that F = {@, E, E°,R} is the o-algebra of subsets of R
generated by {E'}
(b) If § and T are collections of subsets of R, then

o(SUT)=0(S)Ua(T).

Is the statement true? Why?

Solution
(a)It is easy to check that F is a o-algebra.
Note first that { £} C F. Hence

c({E}) CcF. (i)

On the other hand, since o({E}) is a o-algebra, so @, R € o({E}). Also, since
E € o({F}),so E°€o({E}). Hence

FCco({E}). (i)
From (i) and (i7) it follows that
F =0c({E}).
(b) No. Here is why.
Take S = {(,1]} and 7 = {(1,2]}. Then, by part (a),
o(S) =1{2,(0,1],(0,1]°, R} and o(7) = {2, (1,2],(1,2]° R}.
Therefore
o(S)Ua(T) ={2,(0,1],(0,1]%(1,2], (1, 2]°, R}.
We have
(0,1]U (1,2] = (0,2] ¢ o(S) Ua(T).

Hence o(S) U o(7T) is not a o-algebra. But, by definition, o(S U T) is a o-algebra.
And hence it cannot be equal to o(S)Uo(7). W

Problem 23

Consider F = {E € R: either E is countable or E° is countable}.

(a) Show that F is a o-algebra and F is a proper sub-c-algebra of the o-algebra
Br.

(b) Show that F is the o-algebra generated by {{z}: = € R}.

(¢) Find a measure X : F — [0, 00] such that the only \-null set is &.
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Solution

(a) We check conditions of a o-algebra:

e [t is clear that @ is countable, so @ € F.

e Suppose F € F. Then E C R and E is countable or E¢ is countable. This is
equivalent to £° C R and E° is countable or F is countable. Thus,

EFeF=FE¢ecF.

e Suppose Ey, B, ... € F. Either all E,’s are countable, so |J,_, E, is countable.
Hence |J,~, E, € F. Or there exists some E,, € F which is not countable. By
definition, £ must be countable. Now

(U En> = () E; C En,.

n=1 n=1

This implies that (|J7, F,,) is countable. Thus
UE.eF
n=1

Finally, F is a o-algebra. U

Recall that Bg is the o-algebra generated by the family of open sets in R. It is also
generated by the family of closed sets in R. Now suppose E € F. If E is countable
then we can write

E={zy, 22, ..} = [ J{za}.
n=1
Each {x,} is a closed set in R, so belongs to Bg. Hence E € Bg. Therefore,
F C Bg.

F is a proper subset of Bg. Indeed, [0,1] € Bg and [0,1] ¢ F. O
(b) Let S = {{z} : = € R}. Clearly, S C F, and so
o(S) C F.
Now take FF € F and F # @. If E is countable then we can write
E=]J{za} € a(3).

n=1
S

Hence
F Co(S).
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Thus
o(S)=F.

(c) Define the set function A : F — [0, 00| by

AE) = {|E| if E is finite

00 otherwise.

We can check that A is a measure. If £ # @ then A(E) > 0 for every E€ F. N

Problem 24
For E € My, with u(E) < oo, define a real-valued function g on R by setting

vp(r) = p(EN(—oc0,x]) for x €R.

(a) Show that ¢g is an increasing function on R.
(b) Show that pg satisfies the Lipschitz condition on R, that is,

lop(2') —op(@”)] < |z' —2"| for 2/, 2" € R.

Solution
(a) Let z,y € R. Suppose z < y. It is clear that (—oo,z] C (—o0,y]. Hence,
EN(—o0,z] C EN(—o00,y] for E € M. By the monoticity of py we have

pi(r) = pr(E N (=00, z]) < up(E N (=00,4]) = ve(y).
Thus ¢g is increasing on R.

(b) Suppose 2’ < z” we have
En(2, 2" =(EnN(—c0,z"]) \ (EN(—o0,2]).

It follows that

ep(r") —op(a) = pr(EN(—00,2"]) — pr(E N (—o0,2'])
= pr(EN (@, 2")
< NL((xla x//]) — 2" H
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Problem 25

Let E be a Lebesque measurable subset of R with up(E) = 1. Show that there

exists a Lebesgue measurable set A C E such that p(A) = 1.

Solution
Define the function f: R — [0,1] by

f(@)=pL(EN(—oco,z]), z €R.
By Problem 23, we have

|f(z) = f(y)| < |z —yl, Yo,y € R.

Hence f is (uniformly) continuous on R. Since

lim f(zx)=0 and lim f(z)=1,

r——00 r—00

by the Mean Value Theorem, we have
1
dzo € R such that f(xy) = 5

Set A = E N (—00,zg]. Then we have

ACE and pp(A) = % [ |
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Measurable Functions

Remark:
From now on, measurable means Lebesgue measurable. Also measure means Lebesgue measure,

and we write p instead of uy for Lebesgue measure.

1. Definition, basic properties

Proposition 6 (Equivalent conditions)
Let f be an extended real-valued function whose domain D is measurable. Then the following
statements are equivalent:

For each real number a, the set {x € D : f(x) > a} is measurable.

Lo o =

a} is measurable.

(z)
For each real number a, the set {x € D: f(x) > a} is measurable.
For each real number a, the set {x € D : f(x)

(z)

<
For each real number a, the set {x € D : f(x) < a} is measurable.

~

Definition 11 (Measurable function)
An extended real-valued function f is said to be measurable if its domain is measurable and if it
satisfies one of the four statements of Proposition 6.

Proposition 7 (Operations)
Let f,g be two measurable real-valued functions defined on the same domain and ¢ a constant.
Then the functions f +c,cf, f + g, and fg are also measurable.

Note:
A function f is said to be Borel measurable if for each oo € R the set {x : f(z) > a} is a Borel set.
Every Borel measurable function is Lebesgue measurable.

2. Equality almost everywhere

e A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where it fails
to hold is a set of measure zero.

e We say that f = g a.e. if f and g have the same domain and p({z € D : f(z) # g(z)}) = 0.
Also we say that the sequence (f,,) converges to f a.e. if the set {x : f,(z) - f(z)} is a null set.
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Proposition 8 (Measurable functions)
If a function f is measurable and f = g a.e., then g is measurable.

3. Sequence of measurable functions

Proposition 9 (Monotone sequence)
Let (fn) be a monotone sequence of extended real-valued measurable functions on the same mea-
surable domain D. Then lim,, . fn exists on D and is measurable.

Proposition 10 Let (f,) be a sequence of extended real-valued measurable functions on the same
measurable domain D. Then max{ fi,..., fn}, min{fi,..., fn}, limsup,,_ o fn, liminf, .o fn, sup,cy, infpen
are all measurable.

Proposition 11 If f is continuous a.e. on a measurable set D, then f is measurable.

* % ok

Problem 26
Let D be a dense set in R. Let f be an extended real-valued function on R such
that {x : f(x) > a} is measurable for each o € D. Show that f is measurable.

Solution
Let 8 be an arbitrary real number. For each n € N, there exists a,, € D such that
b<a, <+ % by the density of D. Now

o0 1 oo
{z: f(x)>p}= U{x f(x)zﬁ—i—g}: U{x flz) > an,}.
n=1 n=1
Since | {z : f(z) > a,} is measurable (as countable union of measurable sets),
{z: f(z) > [} is measurable. Thus, f is measurable. |
Problem 27

Let [ be an extended real-valued measurable function on R. Prove that {z :
f(z) = a} is measurable for any o € R.
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Solution
e For a € R, we have

{z: fl@)=a}={z: flz) <aj\{z: f(z)<a}.

' '

measurable measurable

Thus {z : f(x) = a} is measurable.
e For a = oo, we have

{o: fla) =00} =R\ {z: f(z) <oo} =R\ [J{z: f(z) <n}.

~
neN measurable

Thus {z : f(x) = oo} is measurable.
e For a = —o0, we have

{z: f(x) = -0} =R\ {z: f(a:)>—oo}:R\U\{x: flx) =2 —n}.

Vo
neN measurable

Thus {z : f(x) = oo} is measurable. |

Problem 28
(a). Let D and E be measurable sets and f a function with domain DUE. Show
that f is measurable if and only if its restriction to D and E are measurable.

(b). Let f be a function with measurable domain D. Show that f is measurable
if and only if the function g defined by

) f(x) forxeD
glo) = {O forxz ¢ D

18 measurable.

Solution

(a) Suppose that f is measurable. Since D and E are measurable subsets of DU FE,
the restrictions f|p and f|g are measurable.

Conversely, suppose f|p and f|g are measurable. For any o € R, we have

{z: fx)>a}={xeD: flp(x)>atU{z e E: flg(z)>a}.

Each set on the right hand side is measurable, so {z : f(z) > a} is measurable.
Thus, f is measurable.
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(b) Suppose that f is measurable. If a > 0, then {z : g(x) > a} ={z: f(z) > a},
which is measurable. If < 0, then {z : ¢g(z) > a} ={z: f(z) > a} U D¢ which
is measurable. Hence, g is measurable.

Conversely, suppose that g is measurable. Since f = g|p and D is measurable, f is
measurable. ]

Problem 29
Let f be measurable and B a Borel set. Then f~'(B) is a measurable set.

Solution
Let C be the collection of all sets E such that f~!(F) is measurable. We show that
C is a g-algebra. Suppose E € C. Since

FHE) = (F7U(B),

which is measurable, so E° € C. Suppose (F,) is a sequence of sets in C. Since

fil (UEn) = Ufil(En%

which is measurable, so | J,, £, € C. Thus, C is a o-algebra.

Next, we show that all intervals (a,b), for any extended real numbers a,b with
a < b, belong to C. Since f is measurable, {x : f(z) > a} and {z: f(x) < b} are
measurable. It follows that (a,00) and (—o0,b) € C. Furtheremore, we have

(a,b) = (—o0,b) N (a,c0),

so (a,b) € C. Thus, C is a g-algebra containing all open intervals, so it contains all
Borel sets. Hence f~!(B) is measurable. [

Problem 30
Show that if f is measurable real-valued function and g a continuous function
defined on R, then g o f is measurable.

Solution
For any a € R,

{z: (go @) > a}=(go ) (a,00)) = S (57 ((a,00)) ).
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By the continuity of g, gfl((a, oo)) is an open set, so a Borel set. By Problem 24,
the last set is measurable. Thus, g o f is measurable. [

Problem 31

Let [ be an extended real-valued function defined on a measurable set D C R.
(a) Show that if {x € D : f(x) <1} is measurable in R for every r € Q, then
f 1s measurable on D.

(b) What subsets of R other than Q have this property?

(¢) Show that if f is measurable on D, then there exists a countable sub-collection
C C My, depending on f, such that f is o(C)-measurable on D.

(Note: o(C) is the o-algebra generated by C.)

Solution

(a) To show that f is measurable on D, we show that {z € D : f(z) < a} is
measurable for every a € R. Let I = {r € Q: r < a}. Then I is countable , and
we have

{reD: fx)<a}=|J{zeD: flx)<r}

rel

Since {x € D : f(x) < r} is measurable, |J,.,{z € D: f(x) <r} is measurable.
Thus, {xr € D: f(x) < a} is measurable.

(b) Here is the answer to the question:

Claim 1 : If E C R is dense in R, then E has the property in (a), that is, if
{r € D: f(x)<r} is measurable for every r € E then f is measurable on D.
Proof.

Given any a € R, the interval (a — 1,a) intersects E since F is dense. Pick some
rp € EN(a—1,a). Now the interval (r1,a) intersects E for the same reason. Pick
some 5 € EN(ry,a). Repeating this process, we obtain an increasing sequence (7,)
in £/ which converges to a.

By assumption, {x € D : f(x) < r,} is measurable, so we have

{reD: f(r)<a}= U{:L‘ €D: f(x)<r,} is measurable .
neN
Thus, f is measurable on D.

Claim 2 : If E C R is not dense in R, then E does not have the property in (a).
Proof.
Since E is not dense in R, there exists an interval [a,b] C E. Let F' be a non
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measurable set in R. We define a function f as follows:

a ifxeF¢
f(x)_{b ifz € F.

For r € E, by definition of F', we observe that

o If r < a then f~'([-o0,7)) = 0.
e If 7 > b then f~([~o0,7)) =R.
o If r =% then f~([—o0,r)) = F".

Since F' is non measurable, F'¢ is also non measurable. Through the above observa-
tion, we see that

a+b

{xeD: flz) <

} non measurable.

Thus, f is not measurable.
Conclusion : Only subsets of R which are dense in R have the property in (a).

(c) Let C = {C, },eq where C, ={z € D: f(x) <r} for every r € Q. Clearly, C is
a countable family of subsets of R. Since f is measurable, C. is measurable. Hence,
C C M. Since My is a o-algebra, by definition, we must have o(C) C M. Let
a € R. Then

{reD: fx)<a}=|J{zeD: flx) <r}={JC.

r<a r<a

It follows that {z € D : f(z) < a} € o(C).
Thus, f is 0(C)-measurable on D. N

Problem 32
Show that the following functions defined on R are all Borel measurable, and
hence Lebesgue measurable also on R:

(b) g(z) =

1 if x s irrational. —x  if x is irrational.

{O if x 1s rational {x if x 1s rational

sinz  if x is rational
(¢) h(z) :{

cosx if x is irrational.
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Solution
(a) For any a e R, let E={x € D: f(z) <a}.

e If a > 1then £ =R, so E € Bg (Borel measurable).

e If 0 <a<1then F=Q,so F € Bg (Borel measurable).

e If a <0 then £ =@, so E € Bg (Borel measurable).

Thus, f is Borel measurable.

(b) Consider g; defined on Q by ¢;(z) = =, then g|g = ¢1. Consider go defined on
R\Q by g(x) = —, then g|gp\g = go. Notice that R, R\Q € Bg (Borel measurable).
For any a € R, we have

{reD: fi(r)<a} =[-00,a) NQ € Bg (Borel measurable),
and
{reD: fo(xr) <a} =[-00,a)N(R\Q) € Bg (Borel measurable).
Thus, ¢ is Borel measurable.

(c) Use the same way as in (b). W

Problem 33
Let f be a real-valued increasing function on R. Show that f is Borel measurable,
and hence Lebesque measurable also on R.

Solution
Forany a € R, let E={x € D: f(z) > a}. Let a =inf E. Since f is increasing,

e if Im(f)C (—o0,a) then £ = @.
o if Im(f) ¢ (—o0,a) then E is either (a, 00) or [a, 00).

Since @, (a,0), [a, 00) are Borel sets, so f is Borel measurable. W

Problem 34
If (fn) is a sequence of measurable functions on D C R, then show that

{r e D: lim f,(x) exists} is measurable.
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Solution

Recall that if f,,’s are measurable, then limsup,, . f,, liminf, . f, and g(z) =
limsup,,_, . frn — liminf,, . f, are also measurable, and if h is measurable then
{z € D: h(x) = a} is measurable (Problem 22).

Now we have

E={zxeD: lim fn(z) exists} = {zx e D: g(x)=0}.

Thus, E is measurable. W

Problem 35

(a) If g : R — R is continuous and f : R — R is measurable then g o f is
measurable.

(b) If [ is measurable then |f| is measurable. Does the converse hold?

Solution
(a) For any a € R, then

E={z: (gof)(x) <a} = (gof) " (-00,a)
= f_l (g_l(—oo,a)) .

Since g is continuous, ¢g~!(—o00,a) is open. Then there is a family of open disjoint
intervals {1, },en such that g~'(—o0,a) = |,y I,. Hence,

neN 1
E=f" (U In> =U ).
neN neN

Since f is measurable, f~'(I,) is measurable. Hence F is measurable. This tells us
that g o f is measurable.

(b) If g(u) = |u| then g is continuous. We have

(9o f)(x) = g(f(x)) = [f(x)]

By part (a), g o f = |f| is measurable.
The converse is not true.
Let E be a non-measurable subset of R. Consider the function:
1 ifrek
€Tr) =

/(@) {—1 ifxéFE.
Then f~!(3,00) = F, which is not measurable. Since (1,00) is open, so f is not
measurable, while | f| = 1 is measurable. W
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Problem 36

Let (f, : n € N) and f be an extended real-valued measurable functions on a
measurable set D C R such that lim, . f, = f on D. Then for every a € R
prove that:

(7)) p{reD: f(x)>a} < 1i7rlllg}f,u{x eD: fulr)>a}
(17)) p{reD: f(x)<a} < lirlzriiogfu{x €D: fu(z)<al.

Solution
Recall that, for any sequence (FE,),en of measurable sets,

p(liminf E,) < liminf u(E,), (%)

n—oo

lim inf E, = U ﬂ Ey = lim ﬂ E,.

neNk>n k>n

Now for every a € R, let £, ={z € D : fi(x) > a} for each k € N. Then

liminf £, = lim ﬂ E,

n—00
k>n

= lim ﬂ{xED: fr(x) > a}

n—o00
k>n

= {zeD: f(x)>a} since fr(zr)— f(z) on D.
Using (*) we get
p{r e D: f(x)>a} < ligiorolfu{x eD: f,>a}l.

For the second inequality, we use the similar argument.
Let F, ={z € D: fi(z) < a} for each k € N. Then

liminf £, = lim ﬂ o

n—oo

Using (*) we get
p{r e D: f(x) <a} <liminfu{zeD: f,<a}. R
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Simple functions

Definition 12 (Simple function)
A function p : X — R is simple if it takes only a finite number of different values.

Definition 13 (Canonical representation )
Let ¢ be a simple function on X. Let {ay,...,a,} the set of distinct valued assumed
by on D. Let D; ={x € X : p(x)=a;} fori=1,....,n. Then the expression

Y = Z a; X D;
=1

is called the canonical representation of .
It is evident that D; N D; =@ fori# j and ., D; = X.

kK okok

Problem 37
(a). Show that

XAnB = XA " XB
XAUB = XA+ XB — XA XB

(b). Show that the sum and product of two simple functions are simple functions.

Solution
(a). We have
Xang(x) =1 <= zx€A and z€B
< xalz) =1=x5(2).
Thus,
XAnB = XA " XB-
We have

Xaup(z) =1<= 2 € AUB.
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If z € AN B then ya(z) + xp(x) — xa(z) - xplz)=1+1—-1=1.

If x ¢ ANB, then v € A\ Borz € B\ A Then xa(z) + xp(z) = 1 and
xa - xexa(z) +xs(z) = 0.

Also,
Xaus(z) =0« 2z ¢ AU B.
Then
xa(@) = xp(x) = xa(x) - xp(z) = 0.
Thus,

XAUB = XA+ XB — XA XB-

If xac(x) =1, then x ¢ A, so xa(xz) =0.
If xac(z) =0, then z € A, so xa(z) = 1. Thus,

Xae =1—xa. U

(b). Let ¢ be a simple function having values ay, ..., a,. Then

Y= ZaiXAi where A; ={z: ¢(x) =a;}.

i=1
Similarly, if ¢ is a simple function having values by, ..., b,,. Then
= ijXBj where B; = {z: 9(x) = b;}.
j=1
Define Cij = Az N Bj. Then

. =1

j=1 7j=1

Similarly, we have
i=1

Since the C;;’s are disjoint, this means that (see part (a))

X4; = ZXCU and xp, = ZXCU‘
j=1 i=1

Thus

n

Y= Z Z%Xcﬁ and ¢ = Z ijXCij-

i=1 j=1 i=1 j=1
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Hence . o
=1 j=1 i=1 j=1

They are simple function. W

Problem 38
Let ¢ : R — R be a simple function defined by

n

ZaiXAi where A; ={z e R: ¢p(z) =a;}.

=1

Prove that ¢ is measurable if and only if all the A;’s are measurable.

Solution
Assume that A; is measurable for all i = 1,...,n. Then for any ¢ € R, we have

{z: p(z)>c}= U A;.

a;>c

Since every A; is measurable, |J, ., A; is measurable. Thus {z : ¢(z) > c} is
measurable. By definition, ¢ is measurable.

Conversely, suppose ¢ is measurable. We can suppose a; < ay < ... < a,. Given
Jj€4{1,2,...,n}, choose ¢; and ¢ such that a;,_1 < ¢; <a; <ca <ajyr. (If j=1or
Jj = n, part of this requirement is empty.) Then

v = (Ua) (U

= ix: gO(:U)>cl}j\{:1:: gp(x)>62];.

vV vV
measurable measurable

Thus, A, is measurable for all j € {1,2,...,n}. N
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Chapter 4

Convergence a.e. and Convergence
in Measure

1. Convergence almost everywhere

Definition 14 Let (f,) be a sequence extended real-valued measurable functions on a measurable
set D C R.

1. We say that lim,, o fn exists a.e. on D if there exists a null set N such that N C D and
lim,, o0 fr(x) exists for every x € D\ N.

2. We say that (f,) converges a.e. on D if lim, o fn(x) exists and lim,_ o fn(z) € R for every
x€D\N.

Proposition 12 (Uniqueness)
Let (f,) be a sequence extended real-valued measurable functions on a measurable set D C R. Let
g1 and g2 be two extended real-valued measurable functions on D. Then

lim f, = g1 a.e. on D and lim f, = g2 a.e. on D} == g1 = g2 a.e. on D.
n— o0 n—oo

Theorem 1 (Borel-Cantelli Lemma,)
For any sequence (A;,) of measurable subsets in R, we have

Z,u(An) < 00 = p(limsup 4,) = 0.
neN nmoee

Definition 15 (Almost uniform convergence)

Let (fy) be a sequence extended real-valued measurable functions on a measurable set D C R and
f a real-valued measurable functions on D. We say that (f,) converges a.u. on D to f if for every
1 > 0 there exists a measurable set E C D such that u(E) < n and (f) converges uniformly to f
on D\ E.

Theorem 2 (Egoroff)

Let D be a measurable set with (D) < co. Let (f,) be a sequence extended real-valued measurable
functions on D and f a real-valued measurable functions on D. If (f,) converges to f a.e. on D,
then (fn) converges to f a.u. on D.
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2. Convergence in measure

Definition 16 Let (f,) be a sequence extended real-valued measurable functions on a measurable
set D C R. We say that (f,) converges in measure p on D if there exists a real-valued measurable
function f on D such that for every € > 0 we have

lim gD |fy— f| >} = lim plw € D |fule) — f(2) 2} =0,

That is,
Ve >0, Vp>0, IN(e,n) e N: p{D: |f, — f] > e} <n for n> N(e,n).

We write f,, = f on D for this convergence.

Proposition 13 (Uniqueness)
Let (fy) be a sequence extended real-valued measurable functions on a measurable set D C R. Let
f and g be two real-valued measurable functions on D. Then

[fo & f on D and f, & g on D] = f = g a.e. on D.

Proposition 14 (Equivalent conditions)

(1) [fnifonD]c)V5>O, AN(E) eN: u{D: |fn— f|>¢e} <e forn> N(e).

©2) [fn % f on D] <= ¥m € N, IN(m): u{D: |fn—f|2%}<%formzN(m).

3. Convergence a.e. and convergence in measure

Theorem 3 (Lebesgue)

Let (f,) be a sequence extended real-valued measurable functions on a measurable set D C R. Let
f be a real-valued measurable functions on D. Suppose

1. fo— f a.e. on D,

2. u(D) < oo.

Then fn £ f on D.

Theorem 4 (Riesz)
Let (fy) be a sequence extended real-valued measurable functions on a measurable set D C R. Let

f be a real-valued measurable functions on D. If f, % f on D, then there exists a subsequence
(fn.) which converges to f a.e. on D.

* % ok
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Problem 39(An exercise to warn up.)

1. Consider the sequence (f,) defined on R by f, = Xpnt1, 7 € N and the
function f =0. Does (f,) converge to f a.e.? a.u.? in measure?

2. Same questions with f, = nX[0,1]-

(Note: x4 is the characteristic function of the set A. Try to write your solution.)

Problem 40

Let (f,) be a sequence of extended real-valued measurable functions on X and
let f be an extended real-valued function which is finite a.e. on X. Suppose
lim, oo fn = f a.e. on X. Let a € [0, u(X)) be arbitrarily chosen. Show that
for every € > 0 there exists N € N such that p{X : |f., — f| < e} > « for
n> N.

Solution
Let Z be a null set such that f is finite on X \ Z. Since f,, — f a.e. on X, f, — f
a.e. on X \ Z. For every € > 0 we have!

plimsup{X\ Z: [f, — f[=¢€}) =0

n—od

S limsupp{ X\ Z: [fu— f] > e} =0
S i X\ Z: [ f12 2} =0
The last condition is equivalent to
lim p{X\ Z: |f,— f] < £} = u(X\ 2) = u(X)
&Vn>0,INeN: pu(X)—p{X\Z: |fu—fl<e} <n forall n>N.
Let us take n = p(X) — a > 0. Then we have
ANeN: p{X\Z: |fu—fl<e}>a foral n>N.
Since {X : |fn — fl<e} D{X\Z: |f. — f| <e}, so we have
Ve>0,INeN: n>N=u{X: |fu—fl<e}))>a 1

1See Problem 11b. We have

p(limsup E,,) > limsup u(E,).

n—oo n—oo
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Problem 41
(a) Show that the condition

lim jife € D+ |fy(a) = f(@)] > 0} =0

implies that f, % f on D.

(b) Show that the converse is not true.

(¢) Show that the condition in (a) implies that for a.e. x € D we have f,(z) =
f(z) for infinitely many n € N.

Solution
(a) Given any € > 0, for every n € N, let

E,={zeD: |fulz) = f(x)] >e}; F.={reD: [fu(z) — f(x)] > 0}.
Then we have for all n € N
ve b, = |fulz) - flz)]>e
= |falz) = f(2)] >0

= x € F),.

Consequently, F,, C F, and pu(E,) < pu(F,) for all n € N. By hypothesis, we have
that lim,_. ¢t(F,) = 0. This implies that lim, . x(E,) = 0. Thus, f, & f.

(b) The converse of (a) is false.

Consider functions:

folz)=—, z€][0,1] neN.
f(x)=0, z€][0,1].

S|

Then f, — f (pointwise) on [0, 1]. By Lebesgue Theorem f,, & f on [0,1]. But for
every n € N

fula) = F@)] = >0, Vo € 0,1]
In other words,
{reD: |fule) - f@)] > 0} = [0,1].
Thus,
lim p{z € D [fulz) = f(2)| > 0} =1 #0.
(c) Recall that (Problem 11a)

p(liminf E,) <liminf pu(E,). (%)

n—oo n—oo
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Let E, ={x € D: fu.(z)# f(z)} and F = liminf, .. E,. By (a),

liminf u(E,) = lim p(E,) =0.

n—oo n—oo

Therefore, by (x), u(E) = 0. By definition, we have

Hence, z ¢ E whenever x € E¢ for infinitely many n’s, that is f,(z) = f(x) a.e. in
D for infinitely many n’s. W

Problem 42
Suppose fr(z) < fuyi(x) for alln € N and x € D\ Z with u(Z) = 0. If f, & f
on D , then prove that f, — f a.e. on D.

Solution

Let B= D\ Z. Since f, L fon D, f,% fon B. Then, By Riesz theorem, there
exists a sub-sequence (f,,,) of (f,) such that f,, — f a.e. on B.

Let C ={zx e B: f, - f}. Then u(C)=0and f,, — fon B\C.

From f,(x) < faot1(2) for all n € N, and since ny, > k, we get fi < f,,, forall £ € N.
Therefore

|fi = F1 < N fui = [

This implies that fy — f on B\ C. Since B\C =D\ (ZUC) and u(ZUC) =0,
it follows that f, — f a.e. on D N

Problem 43
Show that if f, & f on D and g, & g on D then f, + g, = f+ g on D.

Solution
Since f, & f and g, & g on D, for every € > 0,

(4.1) lim p{D: |fu—f1Z 5} =0
(4.2) lim {D: lgn =gl = 5} = 0.
Now

((fat90) = (F + 9| < [fo = Fl+ 90 — gl
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By the triangle inequality above, if |(f, 4+ gn) — (f + g)| > € is true, then at least
one of the two following inequalities must be true:

9 €
—fl>=Z — gl > =.
o= 125 o lgn—gl2 5

Hence
D: |(fatg) = (gl zey c{Delfu—f12 S fu{Dx g — ol = 5.
Therefore,

D |(f+g0) = (F+9)l 2y <p{ D lfa—Fl 2 S} +u{D:lgn -9l = S}
From (4.1) and (4.2) we obtain

lim p{D: |(fa+9a) = (f +9)| 2 €} =0.

n—oo

That is, by definition, f, + g, = f +gon D. W

Problem 44

Show that if f, £ f on D and g, & g on D and u(D) < oo, then fogn = fg
on D.

(Assume that both f, and g, are real-valued for every n € N so that the multiplication f,gn

is possible.)

Solution
For every € > 0 and § > 0, we want u{|f.g, — fg| > ¢} < 6 for n large enough.
Notice that

For any N € N, let
Ex={D: |f|>N}u{D: |g| > N}.

It is clear that Ey D En; for every N € N. Since u(D) < oo, we have

Jim p(En) = p ( N EN) = (@) = 0.

NeN
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It follows that, we can take N large enough to get, for every § > 0,

€ )
() oN < 1 and p(En) < 3

Observe that
€

{D: lgal > N+ 1} {D+ |ga—gl = 5o} U BN

(since |gn| < |gn — g| + |g|)- Now if we have

3 €
n— 25T el >N+ 1 gn—gl =2 55, and [f| >N,

then (*) implies

(D oo —fol 2} < D5 U= 112 5oy U B

€
2N
By assumption, given € > 0, 6 > 0, for n > N, we have

U {D: lgn — g| > }U{D: lgn| > N + 1}.

oo =112 5 <

(N +1)
€ )
: — gl > = 2
From these results, from (*), and (**) we get
6 & O

Problem 45

(a) Definition of ”Almost uniform convergence” (a.u).

(b) Show that if f, — f a.u on D then f, & f on D.

(¢) Show that if f,, — f a.u on D then f, — f a.e. on D.

Solution
(a) Ve > 0,3F C D such that u(F) < € and f,, — f uniformly on D \ E.

(b) Suppose that f, — f a.u on D and f, does not converges to f in measure on
D. Then there exists an ¢y > 0 such that

p{r € D: |fu(z) — f(x)] >0} - 0 as n — oo.
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We can choose ny < ny < ... such that
p{r € D: |fu,(x) — f(x)] >0} > for some r>0 and Vk € N.

Now since f, — f a.uon D,

JE C D such that u(E) < g and f, — f uniformly on D\ E.

Let C = {x € D : |f,(z) — f(x)] > o} Vk € N. Then p(C) > r. Since
fn — f uniformly on D\ E,

AN : n> N =|f.(z) — f(z)| <ep, Ve e D\ E.

Thus,
CcC(D\E)Y=E.

Hence,
0<r<ulC) <uplFE)<

N 3

This is a contradiction.

(c) Since f, — f au. on D, for every n € N, there exists F,, C D such that
w(E,) <+ and f, — f uniformly on D\ E,. Let E = (), oy En, then u(E) = 0.
Since f, — f on D\ E, for every n € N, f, — f on

J(D\E,)=D\()E.=D\E.

neN neN

Since u(E) =0, f,— fae.onD N
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Chapter 5

Integration of Bounded Functions
on Sets of Finite Measure

In this chapter we suppose p(D) < oo.

1. Integration of simple functions

Definition 17 (Lebesgue integral of simple functions)
Let ¢ be a simple function on D and o =Y, a;xp, be its canonical representation. The Lebesgue
integral of ¢ on D is defined by

/D pla)lde) = Y an(D).

We usually use simple notations for the integral of p:

/Dgodu, /Dgo(x)da: or /Dtp.

If fD pdp < 00, then we say that ¢ is integrable on D.

Proposition 15 (properties of integral of simple functions)

1. W(D)=0 = [, pdu=0.

>0, ECD = [Ledu< [, edu.

Jp cedp = ¢ [, pdp.

Jp edn =000 p, -

Jpeedu =c [, edp (cis a constant).
Jpler +w2)dp = [, prdp+ [}, padp.

01 =2 a.e. onD= [, oidp= [, padp.

)

NS T e
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2. Integration of bounded functions

Definition 18 (Lebesgue integral of bounded functions)
Let f be a bounded real-valued measurable function on D. Let ® be the collection of all simple
functions on D. We define the Lebesgue integral of f on D by

/fdp: inf/wdp:sup/ wdp where @, € ®.
D v=2fJp p<fJD

If fD fdu < oo, then we say that f is integrable on D.

Proposition 16 (properties of integral of bounded functions)

1. [pefdu=c [, fdu.

2. [p(f+9)du= [, fdu+ [, gdp.

3. f=gae on D = fodu:ngd,u.

4. f<g on D = [, fdu< [,gdu.

5 fI<M on D = |[yfdu| < [p|fldu < Mu(D).

6. f>0ae on D and [, fdu=0 = f=0ae on D.

7. If (Dy,) be a disjoint sequence of measurable subset D,, C D with |J, .y Dn = D then

neN —n
[ a=uy [ sin

neN

Theorem 5 (Bounded convergence theorem)
Suppose that (fy,) is a uniformly bounded sequence of real-valued measurable functions on D, and
f is a bounded real-valued measurable function on D. If f, — f a.e. on D, then

lim |frn — fldu =0.
D

In particular,

lim fnd,u:/ fdp.

Xk kk
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Problem 46
Let f be an extended real-valued measurable function on a measurable set D. For
My, My € R, My < M, let the truncation of f at My and My be defined by

M, if f(x) <M
g(x) =« f(x) if My < f(x) < M,

Show that g is measurable on D.

Solution

Let a € R. We need to show that the set £ = {z € D: g(z) > a} is measurable.
There are three cases to consider:

1. If a > M, then F = & which is measurable.
2. If a < M; then £ = D which is measurable.

3. If Mi <a< My then E={x € D: f(x)> a} which is measurable.

Thus, in all three cases F is measurable, so g is measurable. W

Problem 47

Given a measure space (X, A, p). Let f be a bounded real-valued A-measurable
function on D € A with (D) < oco. Suppose |f(x)] < M, Yx € D for some
constant M > 0.

(a) Show that if [, fdu = Mu(D), then f = M a.e. on D.

(b) Show that if f < M a.e. on D and if p(D) > 0, then [, fdu < Mu(D).

Solution

(a) For every n € N, let B, = {x € D : f(z) < M — 2}. Then, since f < M on
D\ E,, we have

/D pin = [ gins /D | Jan

< (M=) n(E) + Mu(D\ By,
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Since E,, C D, we have
w(D\ En) = p(D) — p(En).

Therefore,

[ gan < (3= 2B + (D) - d(,
= Mp(D) ~ _p(En)

By assumption [, fdu = Mp(D), it follows that
1
0< —=u(E,) <0, ¥n €N,
n

which implies u(E,) =0, Vn € N,
Now let £ = |J,~, E, then E = {x € D : f(z) < M}. We want to show that
pu(E) = 0. We have

0<p(E) <Y (B =0.

n=1

Thus, u(E) = 0. Since |f| < M, the last result implies f = M a.e. on D.

(b) First we note that |f| < M on D implies that [, fdu < Mu(D). Assume that
[, fdu = Mp(D). By part (a) we have f = M a.e. on D. This contradicts the fact
that f < M a.e. on D. Thus [, fdu < Mp(D). N

Problem 48
Consider a sequence of functions (fn)nen defined on [0,1] by
nx
fulz) = [ for x €]0,1].

(a) Show that (f,) is uniformly bounded on [0,1] and evaluate

lim o
n— oo [071] 1 + 712.732

(b) Show that (f,) does not converge uniformly on [0, 1].

Solution
(a) For all n € N, for all z € [0,1], we have 1 + n?z? > 2nz > 0 and 1 + n?z? > 0,
hence

—_

nx

0<hl@) =1 m <y
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Thus, (f,,) is uniformly bounded on [0, 1].
Since each f,, is continuous on [0, 1], f is Riemann integrable on [0, 1]. In this case,
Lebesgue integral and Riemann integral on [0, 1] coincide:

1
nr nr
Y d = | 2 a
/{0,1} T+ n2z? /0 1t n2a? ™

1 1-‘,—712
= ;dt (with ¢ =14 n?2?)

2n J;
1 In(1 + n?)
= —In(1 N7
2n n(1+n’) 2n
Using L’Hospital rule we get lim, . ln(l;;’“g) = 0. Hence,
nx
li ———du =0.
b o1 1 +n%z? a

(b) For each x € [0, 1],
_ nx
JLI{:O 1+ n2z2 =0

Hence, f, — f = 0 pointwise on [0,1]. To show f, does not converge to f = 0

uniformly on [0, 1], we find a sequence (z,,) in [0, 1] such that x,, — 0 and f,(z,) -
f(0) =0 as n — oo. Indeed, take =, = % Then f,(z) = %. Thus,

2

1
lim f,(z,) = 5

#/(0)=0. m

Problem 49
Let (fn)nen and f be extended real-valued measurable functions on D € My, with
(D) < oo and assume that f is real-valued a.e. on D. Show that f, L fonD
if and only if

li |fn B f|

im

U I g =o.
n—oo Jp 14| f — f]

Solution
e Suppose f, = f on D. By definition of convergence in measure, for any ¢ > 0,
there exists an N € N such that for n > N |

9 3
JE, C D: u(E, — and |f, — — D\ E,.
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For n > N we have

|fn_f| _ |fn_f| |fn_f|
*) /Dl+\fn—f|d”‘/En1+|fn—frd“/D\En1+|fn—f|d“'

Note that for all n € N, we have 0 < fn=]] <1lon FE, and

14| fn—fl
’fn_.ﬂ _ _ 1 — —E
Ogm_|fn f|1_|_|fn_f|§|fn f|§2,u(D) on D\En

So for n > N, we can write (*) as

‘fn_ﬂ €
OS/Dl+|fn—f| = /n”“/D\Enw(D) s

= n(En) + 20(D) u(D\ En)

€ € 9
< En - < oy - — C&.

Thus, lim, . [}, 1f|7};f‘f| p(dz) = 0.

e Conversely, suppose lim,_ [ I lﬁ’};f |f|d,u — 0. We show f,, & f on D. For any

e>0,forneN let B, ={x e D: |f,— f| >e}. We have
|fn_f| > €
L+ |fo—f] — 1+e¢

x > 0 is increasing).

’fn_f|25 =

( since the function p(z) =
It follows that

€ |fn_f| |fn_f|
OSK;1+sm”3énrwn—fﬂ“§éﬂ+uz—ﬂw'

1+e D14 T

Since lim,, s fD 113]?:{;@” =0, lim, o p(E,) = 0. Thus, f, L fonD. N

_Z
1427

Hence,

0<

Problem 50

Let (X, A, p) be a finite measure space. Let ® be the set of all extended real-
valued A-measurable function on X where we identify functions that are equal
a.e. on X. Let

_ [f — gl
P(ﬁg)—/Xm dp for f,g € ®.
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(a) Show that p is a metric on ®.
(b) Show that ® is complete w.r.t. the metric p.

Solution

: : lf—gl
(a) Note that p(X) is finite and 0 < 1+\fgg| <l,s00<p<o0.

e p(f,9) =0 & fxlﬁﬁ; du =0 & f—g=0 < f=g. (We identify

functions that are equal a.e. on X.)

e It is clear that p(f, g) = p(g, f).

e We make use the fact that the function p(z) = 1=, = > 0 is increasing. For
f.g,h e ®,
f=hl  _ _f=gl+lg—n
LH[f=hl = 1+]f—gl+lg—n
[f — gl lg — |
L+[f—gl+lg=nl  1+[f—gl+lg—n
f =4l lg = hl

L+|f—gl  1+lg—hl

Integrating over X we get
—h — —h
/ |f — WS/ |/ — 4| w+/ lg— Al "
x L+ |f =1 x 1+1[f =4 x 1+1]g—hl

p(f,9) < p(f,h) + p(h, g).

That is

Thus, p is a metric on P.

(b) Let (f,) be a Cauchy sequence in ®. We show that there exists an f € ¢ such
that p(f,, f) — 0 as n — co.
First we claim that (f,,) is a Cauchy sequence w.r.t. convergence in measure. Let
n > 0. For n,m € N, define A,,,, = {X : |f, — fm| > n}. For every € > 0, there
exists an NV € N such that

n

(x) n,m>N = p(fn,fm)<€m.
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While we have that

ey =l
p(fn,fm) _/X 1+|fn_fm| d/i > /Am,n 1+|fn_fm| dlu

n
—1+n“( n)

For n,m > N, from (*) we get

U U

€ > —— w(Amn).
1+n 1+77”( )

This implies that p1(A,,,) < e. Thus, (f,) is Cauchy in measure. We know that if
(fn) is Cauchy in measure then (f,) converges in measure to some f € ®.

Next we prove that p(f,, f) — 0. Since f, = f, for any £ > 0 there exists E € A
and an N € N such that

9 9

on X \ E whenever n > N.
On X \ E, for n > N, we have

|fn_f| €
— 7 d n— fld X\ E)<
/X\E1+yfn—f| ”S/X\E‘f fldp < 5y MENE) <

On F, for all n, we have

|fn_f’ _
ol s = <

Hence, for n > N, we have

_ |fo — [l _ | fo = f] | fn — f]
P(fn,f)—/)(mdu—/E—l+’fn_f| dﬂ+/);\E—1+|fn_f| dp < e.

Thus, (f,) converges to f € ®. And hence, (P, p) is complete W

DO ™

DO | ™

Problem 51(Bounded convergence theorem under convergence in measure)
Suppose that (f,,) is a uniformly bounded sequence of real-valued measurable func-
tions on D, and f is a bounded real-valued measurable function on D. If f, — f
on D, then

lim [ |f.— fldp=0.
n—oo D
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Solution

We will use this fact:

Let (a,) be a sequence of real numbers. If there exists a real number a such that
every subsequence (ay,,) has a subsequence (ankl) converging to a, then the sequence
(a,) converges to a.

Consider the sequence of real numbers

on= [ If = fldu, neN.
D

Take an arbitrary subsequence (ay,, ). Consider the sequence (f,, ). Since (f,) con-
verges to f in measure on D, the subsequence (f,,) converges to f in measure on
D too. By Riesz theorem, there exists a subsequence ( fnkl) converging to f a.e. on
D. Thus by the bounded convergence theorem, we have

i [ £, = fldu=0.
n—oo D

That is, the subsequence (a,, ) of the arbitrary subsequence (an,) of (a,) converges
to 0. Therefore the sequence (a,) converges to 0. Thus

lim/|fn—f]du:0. [ |
n—oo D
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Chapter 6

Integration of Nonnegative
Functions

Definition 19 Let f be a nonnegative extended real-valued measurable function on a measurable
D C R. We define the Lebesgue integral of f on D by

/fdu: sup pdp,
D 0<p<f

where the supremum is on the collection of all nonnegative simple function @ on D.
If the integral is finite, we say that f is integrable on D.

Proposition 17 (Properties)
Let f, f1 and fo be nonnegative extended real-valued measurable functions on D. Then

1. [, fdp < oo = f<oo ae onD.

2. [, fdu=0= f=0ae onD.

Dy C D= [ fdu< [, fdu.

f>0ae on D and [, fdu=0= puD)=0.
fi<faon D= [, frdu < [}, fadp.
fi=frae onD= [, fidu < [, fadp.

o

SN

Theorem 6 (Monotone convergence theorem)
Let (f,) be an increasing sequence of nonnegative extended real-valued measurable functions on D.
If f, = f on D then

lim fnd,u:/ fdp.
D D

n—oo

Remark: The conclusion is not true for a decreasing sequence.
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Proposition 18 Let (f,) be an increasing sequence of nonnegative extended real-valued measur-
able functions on D. Then we have

/| (Z f) =3 [ pn

neN neN

Theorem 7 (Fatou’s Lemma)
Let (fn) be a sequence of nonnegative extended real-valued measurable functions on D. Then we
have

/ liminf f,dp < liminf/ fndp.
D > JD

n—oo n—

In particular, if lim, . fn = f exists a.e. on D, then
/ fd,ugliminf/ frndu.
D n—oo Jp

Proposition 19 (Uniform absolute continuity of the integral)
Let f be an integrable nonnegative extended real-valued measurable functions on D. Then for every
€ > 0, there exists 6 > 0 such that
/ fdp <e
E

for every measurable E C D with u(E) < 4.

Xk ckk

Problem 52

Let fi and fy be nonnegative extended real-valued measurable functions on a
measurable set D C R. Suppose fi < fo and fi is integrable on D. Prove that
fo — f1 is defined a.e. on D and

[ = toin= [ fodn= [ pn

Solution

Since f; is integrable on D, f; is real-valued a.e. on D. Thus there exists a null set
N C D such that 0 < fi(z) < oo, Vo € D\ N. Then fy — f; is defined on D \ N.
That is fo — f1 is defined a.e. on D. On the other hand, since fo = f1 + (fo — f1),
we have

/Dde“:/D[fl+(f2_f1)]d“:/[)fld“+/D(f2—fl)du-
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Since fD fidp < oo, we have

[ = soin= [ g~ [ e

Remark: If fD frdp = oo, fD fadp — fD fidp may have the form oo — oo.

Problem 53
Let f be a non-negative real-valued measurable function on a measure space
(X, A, ). Suppose that [, fdu =0 for every E € A. Show that f =0 a.e.

Solution

Since f >0, A={rxe X: f(x) >0} ={r e X: f(x)#0}. We shall show that
p(A) = 0.

Let A, ={z € X : f(z) > 1} for every n € N. Then A = J,, .y A». Now on A,, we
have

1 1
f2o = Aﬁ@zgmm>

= pu(A,) < n/ fdu =0 (by assumption)
A7L

= u(A,) =0 for every n € N.

Thus, 0 < p(A) < 3, eni(An) = 0. Hence, u(A) = 0. This tells us that f = 0
ae. MW

Problem 54

Let (f, : n € N) be a sequence of non-negative real-valued measurable functions
on R such that f, — f a.e. on R.

Suppose lim,, . fR fadp = fR fdu < oo. Show that for each measurable set
E C R we have

lim fnd,u:/fdu.

Solution
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Since g, = fn — faxe >0, n €N and f, — f a.e., we have, by Fatou’s lemma,
/ lim g,dp < lim inf/ gndp
RTL—N}O n—oo R

/R (f = fxo)dn < liminf [ (fu— fuxe)du

n—oo R

/fd,u—/fdu < lim fnd,u—limsup/fndu.
R E R E

n—0oo n—oo

From the last inequation and assumption we get

n—oo

(6.1) fdu > limsup/ fndps.
E E

Let h, = f, — foxe = 0. Using the similar calculation, we obtain

(6.2) /fd,ugliminf/fndu.
E e JE

From (6.1) and (6.2) we have

n—oo

lim fnd,u:/fdp. ]
E E

Problem 55

Given a measure space (X, A,u). Let (f,) and f be extended real-valued A-
measurable functions on D € A and assume that [ is real-valued a.e. on D.
Suppose there exists a sequence of positive numbers (e,) such that

1Y enén < 00.

2. [plfn = [IPdp < &, for every n € N for some fized p € (0, 00).

Show that the sequence (f,) converges to f a.e. on D. (Note that no integrability
of fu, [, |fIF on D is assumed).

Solution

Since | f,,— f|? is non-negative measurable for every n € N, the sequence (Zgil i |p>

is an increasing sequence of non-negative measurable functions. By the Monotone
Convergence Theorem, we have

N N
J b (2“" i f'p) dn=Jim, | 315~ s
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Using assumptions we get

00 N
RV D O AU
- ;/Dm—f\ au
< i8n<oo.
n=1

This means that the function under the integral symbol in the left hand side is finite
a.e. on D. We have

Z|fn—f|p<00 ae. on D = lim |f,— f|"=0 ae. on D
n=1

= lim |f, — f|=0 ae. on D
= fo—f ae on D. L

Problem 56
Given a measure space (X, A, ). Let (f,) and f be extended real-valued mea-

surable functions on D € A and assume that f is real-valued a.e. on D. Suppose
imy oo [ |fa — fIPdp =0 for some fized p € (0,00). Show that

fus f on D.

Solution
Given any ¢ > 0. For every n € N, let A, = {D : |f, — f| > ¢}. Then

[t sraw = | s / Mo g

/ |fn - flpd,u
2 Ep/Z(An)-

v

Since lim,, fD |fn — fIPdp =0, lim, . pu(A,) = 0. This means that
fosfon D. N
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Problem 57
Let (X, A,u) be a measure space and let f be an extended real-valued A-
measurable function on X such that [, |f|Pdp < oo for some fized p € (0,00).
Show that

/\li_)rglo)\pu{X | fl = A} =0.

Solution
Forn=0,1,2,....,let E, ={D: n <|f| <n+1}. Then E, € A and the E,’s are
disjoint. Moreover, X = J,_, E,,. We have

so> [UPdn=3 [ \fPduz > wu(,).
n=0 n n=0

Since Y > nPu(E,) < oo, for any £ > 0, there exists N € N such that for n > N
we have

Z nPu(E,) < e.
n=N
Note that n? > NP since p > 0. So we have

NP Z w(E,) < e.
n=N

But U~y E» ={X : |f| > N}. So with the above NN, we have

Np/L([OJ En> =NPu{X: |f|>N}<e.
n=N

Thus,
Jim APp{X: [fl2A}=0. W

Problem 58
Let (X, A, ) be a o-finite measure space. Let f be an extended real-valued A-
measurable function on X. Show that for every p € (0,00) we have

Jrvdn= [ ot 1> Ay )
X [0,00)
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Solution
We may suppose f > 0 (otherwise we set g = |f| > 0).
1. If f=xg, FE €A, then

/Xfpdu = /X(XE)pd,u = pu(E).

1
[ ol x> Aaldn) = [ o3 a(E)d = ()
[0,00) 0

Thus, the equality (*) holds.

2. If f =377 | aixg (simple function), with a; > 0, E; € A, i=1,...,n., then the
equality (x) holds because of the linearity of the integral.

3. If f > 0 measurable, then there is a sequence (y,) of non-negative measurable
simple functions such that ¢, T f. By the Monotone Convergence Theorem we have

/ frdp = lim [ ohdu
X

n—oo X

= lim PN THX o > Mg (dN)

1790 J10,00)

_ [ DX (),
0,00

Notes:

1. A={X: xg >} ={r e X: xul®) > A}
e If0 <A< 1then A=F.
e If A\ >1 then A =0.

2. Why o-finite measure?

Problem 59

Given a measure space (X, A, ). Let f be a non-negative extended real-valued
A-measurable function on D € A with (D) < oo.

Let D,, ={x € D: f(x) >n} forn € N. Show that

/Dfd,u<oo & Zu(Dn)<oo.

neN
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Solution
From the expression D, = {x € D : f(z) > n} with f A-measurable, we deduce
that D,, € A and

D:=Dy>D;D>DsD>..0D, D D1 D ...
Moreover, all the sets D, \ D,y1 ={D: n < f <n+1, n € N} are disjoint and

D = [J(Du\ Dur).

neN

It follows that

(Do \ Dost) < /D L Jdn S (0 (D D)

ZnM(Dn\Dn—i—l) < / fdp < Z(n"’_l)N(Dn\Dn-i-l)
n=0 UneN(D’ﬂ\Dn-‘rl) n=0

> 0ul(Dy) = (D] < [ fdn < 320+ V(D) = (D)l (0
Some more calculations:
> nul(Dn) = (Dpsr)] = Lp(Dy) — pu(Da)] + 2[u(D2) — p(Ds)] + ...
= ZM(Dn)a
and
> (n+D[u(Dy) = w(Dnir)] = 1u(Do) — p(D1)] + 2[(D1) — (D)) + ...
= D)+ u(Dn)

With these, we rewrite (i) as follows

S u(Da) < [ fdu< p(D) + 3" u(Dy).
n=1 D n=1
Since p(D) < oo, we have

/Dfd,u<oo & Zu(Dn)<oo. [

neN
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Problem 60

Given a measure space (X, A,n) with u(X) < oco. Let f be a non-negative
extended real-valued A-measurable function on X. Show that f is p-integrable
on X if and only if

ZQ"u{x €eX: f(z)>2"} <oo.
n=0

Solution
Let B, ={X : f> 2"} for each n =0,1,2,... Then it is clear that

EyDE D..DFE,DE,; 1D ..
E,\ B ={X: 2" < f <2""} and are disjoint
X\E={X:0<f<1}

o0

X = (X \ E)U|J(E\ Enn).

n=0

Now we have

/fdu = / fdu+/ fdp
X X\EO Unoozo(En\EnJrl)

= Fdp+ / fdy.
/X\Eo ;% En\En i1

This implies that

(6.3) é /E = /X Fu - /X Lz

On the other hand, for n = 0,1, 2, ..., we have

PUENE) € [ Fdn 2B\ B

En\E'rH»l

Therefore,

n\En+1 n=0

S rUBNBu) 3 [ s Y2 (B B
n=0 n=0
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From (6.3) we obtain

S 2uEN )+ [ sns | i < (BN B+ [ i
n=0 0

n=0 X\Eo

Since

OS/ fdp < p(X\ Ep) < p(X) < oo,
X\Eo

we get

64 S 2uE\E) < [ fdp < 3 2 (B Bupr) + (X).

n=0

Some more calculations:

Z 2"u(Ey \ Eny1) = Z 2" [W(En) — p(Epta)]

= p(Eo) — p(En) + 2[u(Er) — p(Es)] + 4u(E2) — p(Es)] + ...
= (Eo) + p(Er) + 2u(E) + 4u(Es) +

32U

l\DI»—t

and

[e.o] o0

> 2B\ Enpr) = Y 2" u(Ey) — p(Bns)]

= 2[u(Eo) — p(E1)] + 4A[u(Er) — p(E2)] + 8[u(E2) — p(Es)] +
= p(Eo) + [1(Eo) + 2u(En) + 4p(E2) + 8u(E3) + ..

= 4l + Y 2u(E

With these, we rewrite (6.4) as follows

+ % Z 2"u(E,) < /deﬂ < pu(Ey) + Z 2" u(En) + (X)),

This implies that
1 [o.¢]
EZQ”M /fdp<22” ) 4 20(X).
n=0
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Since p(X) < oo, we have

/fd,u<oo & Z2”,u{:z:€X: flz)>2"} <oo. N
X n=0

Problem 61
(a) Let {c,; : n,i € N} be an array of non-negative extended real numbers.

Show that
llggolf Z Cni > Z h}figif Cni-
ieN ieN
(b) Show that if (c,; : n € N) is an increasing sequence for each i € N, then

lim E Cni = E lim ¢, ;.
n—o00 ’ n—oo

1€EN i€N

Solution
(a) Let v : N — [0, oo] denote the counting measure. Consider the space (N, P(N), v).
It is a measure space in which every A C N is measurable. Let ¢ — (i) be any

function on N. Then
/ bdv = " b(i).
N

iEN
For the array {c,;}, for each i € N, we can write ¢,; = ¢,(i), n € N. Then ¢, is a
non-negative v-measurable function defined on N. By Fatou’s lemma,

/liminf c,drv < lim inf/ cndu,
N N

n—oo n—oo

that is

Z ligg}f Cni < liiriior.}f Z Cni-

ieN ieN
(b) If (¢, : m € N) is an increasing sequence for each i € N, then the sequence of
functions (c¢,) is non-negative increasing. By the Monotone Convergence Theorem
we have

lim [ ¢,(i)dv :/ lim ¢, (7)dv,
N N

n—oo n—oo
that is
lim E Cpi = E lim ¢,;,. W
n—00 ’ n—oo
ieN ieN
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Chapter 7

Integration of Measurable
Functions

Given a measure space (X, A, u). Let f be a measurable function on a set D € A. We define the
positive and negative parts of f by

fT:=max{f,0} and f~ :=max{—f,0}.

Then we have

f=f"=f" and |fl=f"+f".

Definition 20 Let f be an extended real-valued measurable function on D. The function f is said
to be integrable on D if f+ and f~ are both integrable on D. In this case we define

| = [ rrau= [ ran

Proposition 20 (Properties)

~

. [ is integrable on D if and only if | f| is integrable on D.

o

If f is integrable on D then cf is integrable on D, and we have fD cfdu = ch fdup, where
c is a constant in R.

3. If f and g are integrable on D then f + g are integrable on D, and we have fD(f +g)du =
Ip fap+ [ gdp.

4. fF<g= [pfdu < [pgdp.

5. If f is integrable on D then |f| < oo a.e. on D, that is, [ is real-valued a.e. on D.

6. If {Ds,..., Dy} is a disjoint collection in A, then

/. Difdﬂ=§;/Difd#-

=1
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Theorem 8 (generalized monotone convergence theorem,)

Let (fn) be a sequence of integrable extended real-valued functions on D.

1. If (fn) is increasing and there is a extended real-valued measurable function g such that f, > g
for every n € N, then

lim fndu:/ gdp.
n—oo D

2. If (fn) is decreasing and there is a extended real-valued measurable function g such that f, < g
for every n € N, then

lim fndu:/ gdpu.
D

n—00

Theorem 9 (Lebesque dominated convergence theorem theorem - D.C.T)

Let (fn) be a sequence of integrable extended real-valued functions on D and g be an integrable
nonnegative extended real-valued function on D such that |f,| < g on D for every n € N. If
lim, .o frn = f exists a.e. on D, then f is integrable on D and

lim fnd,u:/fd,u and lim / |frn — flduw = 0.

Xk kK

Problem 62

Prove this statement:

Let f be extended real-valued measurable function on a measurable set D. If f
is integrable on D, then the set {D : f # 0} is a o-finite set.

Solution
For every n € N set

Dn:{xED: |f(x)]2%}

Then we have

{reD: flx)#0}={ze€D: |fx)) >0} =[] Dn.

neN

Now for each n € N we have

D) < [ Afidn < [ 171 < oo,

Thus
w(Dy) = p < 0o, Yn € N,

that is, the set {x € D : f(x) # 0} is o-finite. N
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Problem 63
Let f be extended real-valued measurable function on a measurable set D. If (E,)
18 an increasing sequence of measurable sets such that lim,, .. E, = D, then

/fdu— lim fdp.
D n—oo Jg

Solution
Since (F,) is an increasing sequence with limit D, so by definition, we have
D=JE.
n=1
Let

D1:E1 and Dn:En\En+17 TLZQ

Then {Dy, Do, ...} is a disjoint collection of measurable sets, and we have

ODZ-:E” and DD": GEn:D.
i=1 n=1 n=1

Hence
fin = 3" [ gdp=tin > [ fa
/D ; Dy, ’HOO; D;
= lim fdp = lim fdp. N
n—oo LJ;’L=1 i n—oo En
Problem 64

Let (X, A, ) be a measure space. Let f and g be extended real-valued measurable
functions on X. Suppose that f and g are integrable on X and fE fdu = fE gdu
for every E € A. Show that f = g a.e. on X.

Solution
e Case 1: f and g are two real-valued integrable functions on X.
Assume that the statement f = g a.e. on X is false. Then at least one of the two
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sets E={X: f<g}land F={X: f> g} has a positive measure. Consider the
case u(E) > 0. Now since both f and g are real-valued, we have

1
E=||E wh E:E:{X: _ >_}.
kLeJN . where Ej g f_k:

Then 0 < u(E) < 3 ey #(Ex). Thus there exists kg € N such that p(Ey,) > 0, so
that

/ (9— fdp > kiu(Eko) > 0.
By, 0

Therefore
1
| oodnz [ gdu on) > [ g
By, By, 0

E,

This is a contradiction. Thus p(F) = 0. Similarly, u(F) = 0. This shows that f =g¢
a.e. on X.

e (ase 2: General case, where f and g are two extended real-valued integrable
functions on X. The integrability of f and ¢ implies that f and ¢ are real-valued
a.e. on X. Thus there exists a null set N C X such that f and g are real-valued on
X\ N. Set

_ X\ N X\ N
I L Y A A
0 on N. 0 on N.

Then f and g are real-valued on X, and so on every £ € A we have

/Efduszfduz/Egduz/Egdu-

By the first part of the proof, we have f = g a.e. on X. Since f = f a.e. on X
and g =g a.e. on X, we deduce that

f=g ae.on X. N

Problem 65

Let (X, A, u) be a o-finite measure space and let f,g be extended real-valued
measurable functions on X. Show that if fE fdu = fE gdu for every E € A then
f =g a.e. on X. (Note that the integrability of f and g is not assumed.)
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Solution
The space (X, A, i) is o-finite :

X = U Xy, (Xn) <oo, YneN and {X,: ne N} are disjoint.

neN

To show f = g a.e. on X it suffices to show f = g a.e. on each X,, (since countable
union of null sets is a null set).

Assume that the conclusion is false, that is if £ = {X,, : f < ¢} and F = {X,
f > g} then at least one of the two sets has a positive measure. Without lost of
generality, we may assume u(E) > 0.

Now, F is composed of three disjoint sets:

EW ={X,: —c0< f<g<oc},
E®Y ={X,: —c0< f<g=o0},
E® ={X,: —co=f<g<oo}

Since u(E) > 0, at least one of these sets has a positive measure.
1. w(EW) > 0. Let

1
E(l)k,zz{Xni -m < f f+E§g;g§l}.

m,

Then

EW = U U U Er(i,)k,z'

neN keN [eN

By assumption and the subadditivity of u we have

0<pu(BD< Y u (Ejkd)-

m,k,leEN

This implies that there are some my, kg, lp € N such that

,U(Emo,kolo) > 0.

Let E* = E,, then we have

0,ko0,lo
1 *
(g— fldu > k—u(E ) >0 so gdp > | fdu.
E* 0 EB* E*

This is a contradiction.
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2. u(E®) > 0. Let
El(Q):{Xn: —00 < f<I; g=o00}.

Then
E® — U Ez(2)~
leEN
By assumption and the subadditivity of p we have

0<u(E®) <> u(E?).

leN

This implies that there is some [y € N such that
2
() > 0.

Let E** = E® . Then

lo

/ gdp = oo > fdpu.
* 3k E**
This contradicts the assumption that [, fdu = [, gdu for every E € A.
3. u(E®)) > 0. Let
E® ={X,: —co=f; —m < g< oo}

Then
E® =) EY.
meN
By assumption and the subadditivity of p we have

0<u(E®) <> wED).

meN

This implies that there is some my € N such that
WER) > 0.

Let B = E&). Then

/ gdp > —mu(E*™) > —oo = fdu :
*kk FrEk
This contradicts the assumption.

Thus, u(E) = 0. Similarly, we get u(F) =0. Thatis f =g a.e. on X. N
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Problem 66

Given a measure space (X, A, ). Let [ be extended real-valued measurable and
integrable function on X.

1. Show that for any € > 0 there exists § > 0 such that if A € A with u(A) <9

then
/ fdu
A

2. Let (E,) be a sequence in A such that lim, . u(E,) = 0. Show that
lim,, fEn fdpu=0.

<e&.

Solution
1. For every n € N, set

n otherwise.

fulz) = {f(w) it f(z) <n

Then the sequence (f,,) is increasing. Each f, is bounded and f, — f pointwise.

By the Monotone Convergence Theorem,
€
[ vt [ ranf <5,
b's b's

fe

Ve > 0, dN € N such that

Take § = 55. If u(A) < 0, we have

/Afdu‘ <

[ - f)du‘ "

< | [ - f)du' N u(A)
X
< Si+is=e
2 20

2. Since lim,, .o, p(E,) = 0, with € and § as above, there exists ng € N such that
for n > ng, w(E,) < 0. Then we have

/ fdu’ < e.

This shows that lim, . [, fdp=0. ®
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Problem 67

Given a measure space (X, A, ). Let [ be extended real-valued A-measurable
and integrable function on X. Let E,, = {x € X : |f(x)] > n} for n € N. Show
that lim,, o, u(E,) = 0.

Solution
First we note that X = Ej. For each n € N, we have

E\NE,q={X: n<|fl<n+1}.

Moreover, the collection {E, \ E,11: n € N} C A consists of measurable disjoint

sets and
o

(BN Bu) = X.

n=0

By the integrability of f we have

so> [ fldu=3" [ |flduz 3" vuEa\ Busa)
X n=0 n\Eni1 n=0

Some more calculations for the last summation:

Z np(En \ Epg1) = Z n[u(Ey) — p(Eny1)]

= W(Er) — p(Es) + 2[u(E2) — p(Es)] + 3[u(Es) — p(Eq)] + ...

= Y u(E,) <.

Since the series >, u(E,) converges, lim, .o, u(E,) =0. W

Problem 68

Let (X, A, 1) be a measure space.

(a) Let {E, : n € N} be a disjoint collection in A. Let f be an extended real-
valued A-measurable function defined on \J, o En. If f is integrable on E, for
every n € N, does fUneN g, Jdu exist?

(b) Let (F,, : n € N) be an increasing sequence in A. Let f be an extended real-
valued A-measurable function defined on |, oy Fn. Suppose f is integrable on E,
f07j :;)ery n € N and moreover lim,, an fdu exists in R. Does fUneN p, Jdp
exist
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(a) NO.
X =[l,0), E,=[nn+1), n=12, .. ,{FE,} disjoint.
A = ML7 Hr-
X=JE. fx)=1 VzeX.
neN
/fd,uzl,VneN, / fdu:/ ldp = oo.
En Unen Bn [1,00)
(b) NO.
X=R, F,=(—n,n), n=1,2,...., (F,: n€N) increasing
A= My, pr.
X = UF”’ f(z)=1for x>0, f(x)=—-1for <0
neN

fdu = / (—1)du +/ ldp=0 = lim fdpu =20
F, (—n,0) [0,n)

n—oo F,
n

/ fdu:/fdu:/ (—1)d,u+/ 1dp does not exist. W
UnEN Fn R (—O0,0) (0,00)

Problem 69
Let f is a real-valued uniformly continuous function on [0,00). Show that if f
is Lebesgue integrable on [0, 00), then

lim f(z) = 0.

r—00

Solution
Suppose NOT. Then there exists € > 0 such that for each n € N, there is z, > n
such that |f(z,)] > . W.L.O.G. we may choose (x,) such that

Tpi1 > xp+ 1 forall neN.

Since f is uniformly continuous on [0, 00), with the above e,

€ (0.5): le—9l <5 = |f) - fw)l < <.
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In particular, for = € I, = (z, — 0, x, + J), we have
5
[f(za) = fl@)l <3, VneEN.

This implies

F@) = 1f@)] <= = |f@)]> |f(z)] -

>
5 =&

€
5

DO ™
| ™

Since xp41 —x, > 1l and 0 < § < %, I, N I+ = 0. Moreover, |J,~, I, C [0,00).
By assumption, f is integrable on [0, 00), so we have

(o) o0 6
o0 > dp > / du > /—d = 0.
[o,oo)f m ; Inf 0 ; | g

This is a contradiction. Thus,

lim f(z)=0. W

r—00

Problem 70
Let (X, A, 1) be a measure space and let (f,)nen, and f, g be extended real-valued
A-measurable and integrable functions on D € A. Suppose that

1. limy, oo fn=f a.e. on D.

2. lim,, o fD frndu = fD fdpu.
3. either f, > g on D for alln € N or f, < g on D for alln € N.

Show that, for every E € A and E C D, we have

lim fnd,u:/fdu.
E E

n—oo

Solution

(a) First we solve the problem in the case the condition 3. is replaced by f,, > 0 on
D for all n € N.
Let h, = f, — fuxE for every E € A and E C D. Then h,, > 0 and A-measurable
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and integrable on D. Applying Fatou’s lemma to h,, and using assumptions, we get

[ san= [ gau= [ (6= pxon < tmint [ (5= fxepdn

= lim fndu—hmsup/ faxedu

n—oo n—o0

= /fd,u—limsup/fndu.
D n—oo JE

Since f is integrable on D, [ p Jdu < oo. From the last inequality we obtain,

A

(%) hmsup/fndp</fd,u

n—oo

Let k, = f. + faxg for every E € 2 and £ C D. Using the same way as in the
previous paragraph, we get

(%) /fdu < hminf/ frndpe.
E n—ee JE
From (*) and (**) we get
lim [ f.dp= / fdp. N

Next we are coming back to the problem. Assume f, > g on D for all n € N. Let
©n = fn — g. Using the above result for ¢, > 0 we get

lim gpndu:/godu.
E E

n—oo

That is

i [ (1= g~ [ (F = g)a

n—o0

lim fndu / gdp = / fdp — / gdp.
n—oo E

Since ¢ is integrable on E, fE gdp < co. Thus, we have

lim fnd,u:/fdu. |
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Problem 71(An extension of the Dominated Convergence Theorem)
Let (X, A, i) be a measure space and let (fn)nen, (gn)nen, and f,g be extended
real-valued A-measurable functions on D € A. Suppose that

1. lim, oo fn=f and lim, .. g, =g a.e. on D.
2. (gn) and g are all integrable on D and lim, . [}, gndp = [}, gdp.

3. | ful < gn on D for every n € N.

Prove that f is integrable on D and lim,,_, fD fodp = fD fdu.

Solution

Consider the sequence (g, — fn). Since |f,| < gn, and (f,) and (g,) are sequences
of measurable functions, the sequence (g, — f,) consists of non-negative measurable
functions. Using the Fatou’s lemma we have

/ liminf(g, — fn)du < liminf/ (gn — fn)dp
D D

/ lim (g, — fn)dp < lim / gnd,u—limsup/ fndp
p n—o© n—oo Jp n—00 D

/gdu—/ fdué/gdﬂ—limsup/ fndp
D D D n—0o0 D

fduzlimsup/fndu. (%) (since /gd,u<oo).
D D D

n—oo

Using the same process for the sequence (g, + f,,), we have

/fdugliminf/fndp. ().
D n—oo D

From (*) and (**) we obtain
lim [ f.du= / fdp.
The fact that f is integrable comes from g, is integrable:
|fn| <G = / frdp < / gndp < 00
D D

= /fdu<oo. |
D
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Problem 72
Given a measure space (X, A,u). Let (fn)nen and f be extended real-valued
A-measurable and integrabe functions on D € A. Suppose that

lim f, = f ae. on D.

(a) Show that if lim, . [ | fuldp = [5|fldp, then lim, .o [, fodp = [, fdp.
(b) Show that the converse of (a) is false by constructing a counter example.

Solution
(a) We will use Problem 71 for

gn = 2(|fn| + |gn|) and h, = |fn - f| + |fn| - |f|7 n € N.
We have

h, —0 a.e. on D,
gn — 4|f| a.e. on D,

i [ gudn =2t [ (fldpt2 [ |fldu= [ alflan

So all conditions of Problem 71 are satisfied. Therefore,

n—oo

lim [ h,dp = / hdpu =0 (h=0).
D D
i [ (4, = fldp+ i [ (il [ (7ldn =0
Since limy, oo [}, |fuldpe — [ |f|dpe = 0 by assumption, we have

lim [ [f,— fldu = 0.
n—oo D

Lh@—éﬂﬂzQ

Hence, lim,, .o [, fudp = [, fdp.

(b) We will give an example showing that it is not true that

i [ fudn= [ gan =t [ fide= [ |flan
n—oo Jp D n—oo Jp D
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n  if0<z<i
fal) =40 ifi<a<i-2
-n ifl-i<az<l.
And so
_n if0§x<%0r1—%<x§1
1l =190 if 1<z <1-1

Then we have

fn—0=0 and fnd,u:()—>0:/ 0dp
[0,1] [0,1]

while

/ |faldp=2—2#0. N1
[0,1]

Problem 73

Given a measure space (X, A, ).

(a) Show that an extended real-valued integrable function is finite a.e. on X.
(b) If (fn)nen 1S a sequence of measurable functions defined on X such that
> nen Jx [fuldp < oo, then show that ", fn converges a.e. to an integrable

function f and
/X%fndMZ/deuZ%/andu-

Solution
(a) Let E = {X : |f| = co}. We want to show that p(E) = 0. Assume that
w(E) > 0. Since f is integrable

o> [ 1l [ |fldu=c.

This is a contradiction. Thus, u(E) = 0.

(b) First we note that SV |f,| is measurable since f, is measurable for n € N.
Hence,

N [e%S)
lim YISl =1l
n=1 n=1
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is measurable. Recall that (for nonnegative measurable functions)

J 3 tldn =3 [ 1
By assumption,
> [ bl <
hence,

/ > | faldp < 0.
Xn:l

Since > 7 |fn| is integrable on X, by part (a), it is finite a.e. on X. Define a
function f as follows:

ﬂ@:{z;ﬁnwmm2i¢m<m

0 otherwise.

So f is everywhere defined and f = limy_ o 22;1 fn a.e. Hence, f is measurable
on X. Moreover,

[ sl < [ 110 [

Thus, f is integrable and hy = ZnN:I fn converges to f a.e. and

>
n=1

dp < / > | faldp < oo
Xn:l

N 00
| <D 1fal <01l
n=1 n=1

which is integrable. By the D.C.T. we have
fdu:/ lim hydpy = lim hn
/X x N—oo N—oo [y
N N
= lim/ fodp = lim /fndu
= > / fody. W
n=1"%X
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Problem 74
Let f be a real-valued Lebesque measurable function on [0, 00) such that

1. f is Lebesque integrable on every finite subinterval of [0, 00).

2. lim, . f(z) =c€R.

Show that .
lim — fdup = c.

a0 @ J[0,a]

Solution
By assumption 2. we can write

(x) Ve>0,dN: >N = |f(x)—¢c| <e.

Now, for a > N we have

1/

- f—o)dp
- [O,a]( )dpr
1

< —/ |f —cldpr
@ J10,a]

1
=—(/ 1 cldpn+ [ \f—CIduL)-
a [0,N] [N,a]

r € [N,a] = |f(zx)—c|<e.

1
- fdur —c
@ J10,q]

By (*) we have

Therefore,

(a = N)

€.

()

1 1
—/ fdpr —c S—/ |f = cldpr, +
a Jo,a] @ Jo,N]

It is evident that
. (a—N)
lim ———% e =¢.
a—00 a

By assumption 1., | f —¢| is integrable on [0, N], so f[o ] |f —c|dpy is finite and does
not depend on a. Hence

1
lim — |f —c|dur = 0.
a—o0 (O [O,N]
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Thus, we can rewrite (**) as
.1
lim |[— fdup —c| <e.
a—0o0 |
[0,a]
Since € > 0 is arbitrary, this implies that
.1
lim |- fdup —c|=0. 1
a—oo | 4 [0,(1]

Problem 75
Let f be a non-negative real-valued Lebesgue measurable on R. Show that if
Y2 f(x +n) is Lebesgue integrable on R, then f =0 a.e. on R.

Solution
Recall these two facts:

1. If f, > 0 is measurable on D then [, (307 fo)dp =Yooy [} fudp.
2. If f is defined and measurable on R then [, f(z + h)du = [; f(x)dp.

From these two facts we have

/R (if(x+n)> duy = fj /R F(o+n)dp
_ i [ st

Since Y_>° | f(z + n) is Lebesgue integrable on R,

/R (f:f(x—kn)) dug < oo.

n=1

Therefore,

(%) Z/Rf(x)d,uL < 00.

Since [, f(x)dp, >0, (*) implies that [, f(z)dur =0. Thus, f =0ae. on R. W
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Problem 76
Show that the Lebesque Dominated Convergence Theorem holds if
a.e. convergence 1is replaced by convergence in measure.

Solution

We state the theorem:

Given a measure space (X, A, ). Let (f, : n € N) be a sequence of extended real-
valued A-measurable functions on D € A such that |f,| < g on D for everyn € N

for some integrable non-negative extended real-valued A-measurable function g on
D. If fo & f on D, then f is integrable on D and

lim fndu:/ fdpu.
D D

n—oo

Proof:

Let (fn,) be any subsequence of (f,). Then f,, £ f since f, & f. By Riesz
theorem, there exists a subsequence ( fnk’) of (fn,) such that foy, — [ a.e. on D.
And we have also |fn, | < g on D. By the Lebesgue D.C.T. we have

(%) / fdu = llim / fnkldp.
D —oo Jp
Let a, = [}, fudp and a = [, fdu. Then (*) can be written as

Hence we can say that any subsequence (an,) of (a,) has a subsequence (an, )
converging to a. Thus, the original sequence, namely (a,), converges to the same
limit (See Problem 51): lim,, ., a,, = a. That is,

lim fnd,u—/fd,u. |
D D

n—oo

Problem 77

Given a measure space (X, A, ). Let (fn)nen and f be extended real-valued
measurable and integrable functions on D € A.

Suppose that limy, . [}, | fn — fldp = 0. Show that

(a) fo s f on D.

(b) lim,, o0 fD |fn|d:u = fD |f|dﬂ-
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Solution
(a) Given any € > 0, for each n € N, let £, ={D : |f, — f| > €}. Then

/Ifn—flduz/ | fo — fldp > ep(Ey).
D En

Since lim,, fD |fn — fldp =0, lim, . pu(E,) =0. That is f, £ fon D.
(b) Since f, and f are integrable

[l =100 [ 1ndau= [ 1fidn< [ 15, rldn

By this and the assumption, we get

1mUW@/M@<M/mfww
tin [ (fldn = [ |flde.

This implies

Problem 78
Given a measure space (X, A,u). Let (fn)nen and f be extended real-valued
measurable and integrable functions on D € A. Assume that f, — f a.e. on D

and limy, oo [ | faldi = [, | fldp. Show that

iy [ 1fo = Sl = 0.
n—oo D

Solution
For each n € N, let h,, = |f,| + | f| — | fn — f|- Then h, >0 for all n € N.
Since f, — f a.e. on D, h, — 2|f] a.e on D. By Fatou’s lemma,

2 [ e < timint [ (1l 1Ddn = timsup [ 17, = fla
D n—oo

— i [ faldpes limn [ \7ld s [ 1f, = fld
n—oo fp n—oo [ p n—o00 D
= 2/ \f\du—limsup/lfn—f\du-

D n—oo D
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Since | f| is integrable, we have

lim sup /D o fldp <0, (i)

n—oo

Now for each n € N, let g, = |fn — f| — (| ful = |f]). Then h,, > 0 for all n € N.
Since f, — f a.e. on D, g, — 0 a.e on D. By Fatou’s lemma,

n—0oo

0= tim [ gudn < timint [ |f, = fldn~tmsup [ (15|~ 17
D n—ee Jbp D

< timint [ |f, ~ fldn Y [ (fdecs lim [ 17ld).
n—oo D . n—oo D n—oo D .
=0

Hence
liminf/ |fr — fldp > 0. (i7)
n—oo D

From (7) and (i) it follows that

n—o0

D

Problem 79
Let (R, My, 1) be the Lebesgue space. Let f be an extended real-valued Lebesgue
measurable function on R. Show that if f is integrable on R then

tim [ |f(a+ 1) = fa)ldr = 0.

Solution
Since f is integrable,

-M 0o
lim (/ ]f|dm—i—/ |f\dx) =0 for M eR.
M—o0 oo M

Given any € > 0, we can pick an M > 0 such that

-M 00 c
/ |f|dm—i—/ |f]dx<é—l.
—00 M
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Since C..(R) is dense in L*(R), we can find a continuous function ¢ vanishing outside

[— M, M] such that

Then we have

I
=
|
)
oW
=

If = el

o N T

< 4o =-.
(Recall: ¢ =0 outside [—-M, M] ). Now for any h € R we have

1f (2 +h) = F@) ]l < £ (@) = (@) + lle(@) =@+ M)+l +h) = fz+h)lL
Because of ¢ € C.(R) and translation invariance, we have

lim [[p(z) — o(z +h)[L =0 and lp(z +h) = f(z+h)| = [[f(2) = o(@)]s-

h—0

It follows that
lim || f(z+h) = F@)lh < 1F — el + lim [lo(e) — (@ + B+ 1F ~ ol
< 2%+O:€.

Since € > 0 is arbitrary, we have

tim £z + ) — F(@)]], = lim / et h)— f@)lde=0. m
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Chapter 8

Signed Measures and
Radon-Nikodym Theorem

1. Signed measure

Definition 21 (Signed measure)

A signed measure on a measurable space (X, A) is a function X : A — [—00, 00| such that:
(1) M(©) = 0.

(2) X assumes at most one of the values £oo.

(8) X is countably additive. That is, if {Ep}tnen C A is disjoint, then

A <U En> =Y AME).

neN neN

Definition 22 (Positive, negative, null sets)
Let (X, A, \) be a signed measure space. A set E € A is said to be positive (negative, null) for the
signed measure X\ if

FeA FCE= \F)>0 (<0, =0).

Proposition 21 (Continuity)
Let (X, A, \) be a signed measure space.
1. If (Ep)nen C A is an increasing sequence then

lim A(E,) = lim A <U E) - )\( lim E)
neN

2. If (E,)nen C A is an decreasing sequence and A(E1) < oo, then

g, MEn) = g 2 (ﬂ E) =A(Jim ).

neN
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Proposition 22 (Some more properties)

Let (X, A, \) be a signed measure space.

1. Every measurable subset of a positive (negative, null) set is a positive (negative, null) set.
2. If E is a positive set and F' is a negative set, then ENF is a null set.

3. Union of positive (negative, null) sets is a positive (negative, null) set.

Theorem 10 (Hahn decomposition theorem,)
Let (X, A, \) be a signed measure space. Then there is a positive set A and a negative set B such
that

ANB=@ and AUB=X.

Moreover, if A’ and B’ are another pair, then A\ A’ and B A\ B’ are null sets.
{A, B} is called a Hahn decomposition of (X, A, ).

Definition 23 (Singularity)

Two signed measure X1 and Ay on a measurable space (X, A) are said to be mutually singular and
we write \y L \o if there exist two set E,F € A such that ENF =@, EUF =X, E is a null set
for A1 and F is a null set for As.

Definition 24 (Jordan decomposition)
Given a signed measure space (X, A, \). If there exist two positive measures u and v, at least one
of which is finite, on the measurable (X, A) such that

ply and AN=pu—v,
then {p, v} is called a Jordan decomposition of X.
Theorem 11 (Jordan decomposition of signed measures)
Given a signed measure space (X, A, X). A Jordan decomposition for (X, A, \) exists and unique,
that is, there exist a unique pair {p,v} of positive measures on (X, A), at least one of which is
finite, such that plv and A= p—v.

Moreover, with any arbitrary Hahn decomposition { A, B} of (X, A, \), if we define two set functions
w and v by setting

wWE)=ANENA) and v(E)=—-XNENB) for E€A,

then {p, v} is a Jordan decomposition for (X, A, ).

2. Lebesgue decomposition, Radon-Nikodym Theorm

Definition 25 (Radon-Nikodym derivative)
Let p be a positive measure and X be a signed measure on a measurable space (X, A). If there exists
an extended real-valued A-measurable function f on X such that

AME) :/ fdu for every E € A,
E

then f is called a Radon-Nikodym derivative of \ with respect to u, and we write % for it.
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Proposition 23 (Uniqueness)

Let pu be a o-finite positive measure and A be a signed measure on a measurable space (X, A). If
two extended real-valued A-measurable functions f and g are Radon-Nikodym derivatives of A with
respect to u, then f =g p-a.e. on X.

Definition 26 (Absolute continuity)
Let p be a positive measure and X be a signed measure on a measurable space (X, A). We say that
A is absolutely continuous with respect to p and write A < p if

VE € A), p(E) =0= A(E) =0.
Definition 27 (Lebesgue decomposition)

Let p be a positive measure and X be a signed measure on a measurable space (X, A). If there exist
two signed measures A\, and s on (X, A) such that

Ag K 1y AsLlp and A=A, + Ag,

then we call {\,, As} a Lebesgue decomposition of X\ with respect to pn. We call N\, and As the
absolutely continuous part and the singular part of A with respect to p.

Theorem 12 (Ezistence of Lebesgue decomposition)
Let p be a o-finite positive measure and \ be a o-finite signed measure on a measurable space
(X, A). Then there exist two signed measures A, and \s on (X, A) such that

Aa K oy AsLpy, A=Xa +As and A, is defined by M\ (E) = / fdu, VE € A,
E

where [ is an extended real-valued measurable function on X.

Theorem 13 (Radon-Nikodym theorem,)

Let p be a o-finite positive measure and \ be a o-finite signed measure on a measurable space
(X, A). If A < p, then the Radon-Nikodym derivative of A with respect to u exists, that is, there
exists an extended real-valued measurable function on X such that

AE) = /Efdu, VE € A.

Xk kk

Problem 80

Given a signed measure space (X, A, \). Suppose that {u,v} is a Jordan de-
composition of X\, and E and F are two measurable subsets of X such that
ENF =g, FUF =X, E is a null set for v and F is a null set for v.Show
that {E, F'} is a Hahn decomposition for (X, A, \).
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Solution
We show that E is a positive set for A and F' is a negative set for A. Since {u, v} is
a Jordan decomposition of A, we have

AMFE) =u(E)—v(E), VE € A.

Let Eg € A, Ey C E. Since E is a null set for v, Ej is also a null set for v. Thus
v(Ey) = 0. Consequently, \(Ey) = u(Ep) > 0. This shows that E is a positive set
for A.

Similarly, let Fy € A, Fy C E. Since F is a null set for u, Fy is also a null set for
w. Thus p(Fy) = 0. Consequently, A\(Fy) = —v(Fy) < 0. This shows that I is a
negative set for \.

We conclude that {E, F'} is a Hahn decomposition for (X, .4, \). B

Problem 81
Consider a measure space ([0, 27], M N0, 27, ur). Define a signed measure \
on this space by setting

AE) = / sinzdpg, for E € M, N|0,27].
B

il
3
/

Let C = |

% Let € > 0 be arbitrary given. Find a measurable set C' C C
such that A

.
> MNC) and A\(E) > —¢ for every measurable subset E of C".

)

f

Solution
Let X = [0,27], f(z) = sinz. Then f is continuous on X, so f is Lebesgue
(=Riemann) integrable on X. Given e > 0, let § = min{$, 5}. Let C' = [3m, 37 +4],
then

C'cC and f(z)=sinzx <0, v’

We have
A(C") :/ sin xdpy > / sinzdpy, = AC).
' c

Now for any £ C ¢’ and E € My N[0, 27], since pu(EF) < pu(C’) and f(x) < 0 on
C’, we have

AME) = / sin xdpy, > / sin xdpy, > / (—1)dpg, = —p(C") = =4.
E !’ !
By the choice of §, we have

19 19
0< - = —0>——> —=¢.
2 5~ ¢
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Thus, for any F € M N|[0,27] with E C C’ we have A(E) > —s. &

Problem 82

Given a signed measure space (X, A, \).

(a) Show that if E € A and \(E) > 0, then there exists a subset Ey C E which
is a positive set for X with A\(Ey) > A(E).

(b) Show that if E € A and A\(E) < 0, then there exists a subset Ey C E which
is a negative set for A with \(Ey) < \(E).

Solution
(a) If F is a positive set for A then we're done (just take Ey = E).
Suppose E is a not positive set for A. Let {A, B} be a Hahn decomposition of

(X, A, \). Let Ey = ENA. Since A is a positive set, so Ey is also a positive set (for
Ey C A). Moreover,

ME)=XNENA)+ XENB)=XEy) + XNENB).

Since A(ENB) <0, 0<A(E) < A(Ep). Thus, By = EN A is the desired set.
(b) Similar argument. Answer: Ey=ENB. W

Problem 83

Let j1 and v two positive measures on a measurable space (X, A). Suppose for

every € > 0, there exists E € A such that u(E) < € and v(E°) < €. Show that
plv.

Solution
Recall: For positive measures p and v

puly & 3JAe A: p(A) =0 and v(A°) =0.
By hypothesis, for every n € N there exists E,, € A such that
1 . 1
w(E,) < > and v(E;) < ol

Hence,

Zu(En)SZ%<OO and ZV(E;)SZ%@Q

neN neN neN neN

www.MathVn.com - Math Vietnam



www.MATHVN.com - Anh Quang Le, PhD

102 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

By Borel-Cantelli’s lemma we get

n—oo n—oo

W (hm sup En> =0 and v (lim sup EZ) = 0.

Let A = limsup,,_,., E,. Then u(A)=0. (¥*)
We claim: A¢ = liminf, . Ef. Recall:

liminf A, ={z € X: € A, forall but finitely many n € N}.
For every x € X, for each n € N, we have either v € E,, or x € ES. If v € E,, for
infinitely many n, then € limsup,,_, . E, and vice versa. Otherwise, z € E,, for
a finite numbers of n. But this is equivalent to x € E¢ for all but finitely many n.
That is z € liminf,,_. Ef. Hence,

limsup £, Uliminf £ = X.
Now, if z € limsup,,_, . F, then x € E, for infinitely many n, so x ¢ liminf,_, ., EC.

This shows that
limsup £, Nliminf £ = 0.

Thus, A° = liminf, . ES as required.
Last, we show that v(A¢) = 0. Since liminf, ., ES C limsup,,_, ES and v (limsup,,_, ., ES) =
0 (by the first paragraph), we get

v(liminf £) = v(A°) = 0. (%)

n—oo

From (*) and (**) we obtain plv. W

Problem 84

Consider the Lebesgue measure space (R, My, ur). Let v be the counting measure
on My, that is, v is defined by setting v(E) to be equal to the numbers of elements
in E € My, if E is a finite set and v(E) = oo if E is infinite set.

(a) Show that pg, < v but id’% does not ezist.

(b) Show that v does not have a Lebesgue decomposition with respect to pur,.

Solution
(a) Let E C R with v(E) = 0. Since v be the counting measure, £ = (). Then
pr(E) = pr(0) = 0. Thus,

ECR, v(E)=0 = u,(E)=0.
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Hence, pp < v.
Suppose there exists a measurable function f such that

mp(E) = / fdv for every E € M.
B

Take £ = {z}, = € R then we have
Ee My, up(E)=0, and v(E)=1.
This implies that f = 0. Then for every A € M, we have
pr(A) = / 0dv = 0.
A
This is impossible.

(b) Assume that v have a Lebesgue decomposition with respect to py. Then, for
every £ C R and some measurable function f,

V="Vs+ Vs, Vg L g, VsLpp, and v,(F) :/fdpL.
E

Since vy Ly, there exists A € My, such that puy(A°) =0 and A is a null set for v;.
Pick a € A then v4({a}) = 0. On the other hand,

val{a}) = /{ s and i ({a}) =0

It follows that v,({a}) = 0. Since v = v, + vs, we get

1 =v({a}) =v.({a}) + vs({a}) =0+0=0.

This is a contradiction. Thus, v does not have a Lebesgue decomposition with
respect to . W

Problem 85

Let  and v be two positive measures on a measurable space (X, A).

(a) Show that if for every e > 0 there exists 6 > 0 such that v(E) < € for every
E e A with u(E) < 6, then v < p.

(b) Show that if v is a finite positive measure, then the converse of (a) holds.

Solution
(a) Suppose this statement is true:  (*):= for every ¢ > 0 there ezists § > 0 such
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that v(E) < e for every E € A with u(E) < ¢ .
Take £ € A with p(E) = 0. Then

Ve >0, v(F) <e.

It follows that v(E) = 0. Hence v < p.
(b) Suppose v is a finite positive measure and p is a positive measure such that
v < p. We want to show (*) is true. Assume that (*) is false. that is

Je>0 st [V6>0, IE€ A st {u(E)<d and v(E) >e}].

In particular,

1
de >0 st [Vn €N, 3B, € A st {u(E,) < — and v(E,) > 5}]
n

Since >, oy (En) < 3o 27 < 00, by Borel-Catelli lemma, we have

p(limsup E,,) = 0.

n—oo

Set £ = limsup,,_,., Ey,, then u(E) = 0. Since v < pu, v(F) = 0. Note that
v(X) < oo, we have

v(E) =v(limsup E,) > limsupv(E,) > v(E,) > ¢.

n—oo n—oo

This is a contradiction. Thus, (*) must be true. M

Problem 86

Let pu and v be two positive measures on a measurable space (X, A). Suppose j—;
exists so that v < p.

(a) Show that if g—; >0, p-a.e. on X, then p < v and thus,  ~ v.

(b) Show that if Z—Z >0, p-a.e. on X and if u and v are o-finite, then Z—’Ij exists
and

d dv\ ™

d—Z = <£> , —a.e. andv —a.e. on X.

Solution
(a) For every E € A, by definition, we have
[ dv

S e

dp.

www.MathVn.com - Math Vietnam



www.MATHVN.com - Anh Quang Le, PhD

105

Suppose v(F) = 0. Since g—: > 0, p-a.e. on X, we have

dv
—dp = 0.
/E dp

Hence, pu(F) = 0. This implies that p < v and so p ~ v (since v < p is given).

(b) Suppose g—; > 0, p-a.e. on X and if u and v are o-finite. The existence of 3—5 is
guaranteed by the Radon-Nikodym theorem (since p ~ v by part a). Moreover,

By the chain rule,

dndv _dp

E'd,uid,ui , p—ae. on X.
dv d d
d_y'd_u:d_yz , v—a.e. on X.
1 dv v
Thus,
d dv\
d_”:<d—y> , p—ae andv—ae on X. A
v 1
Problem 87

Let (X, A, 1) be a measure space. Assume that there exists a measurable function
f X — (0,00) satisfying the condition that p{z € X : f(x) < n} < oo for
every n € N.

(a) Show that the existence of such a function f implies that p is a o-finite
measure.

(b) Define a positive measure v on A by setting

I/(E):/Efdu for Ee A

Show that v is a o-finite measure.
(¢) Show that ‘;—‘Ij exists and

dp 1

= ?, i—a.e. and v —a.e. on X.

www.MathVn.com - Math Vietnam



www.MATHVN.com - Anh Quang Le, PhD
106 CHAPTER 8. SIGNED MEASURES AND RADON-NIKODYM THEOREM

Solution
(a)By assumption, p{z € X : f(z) < n} < oo for every n € N. Since 0 < f < o0,
so U~ {X: f<n}=X. Hence p is a o-finite measure.

(b) Let v(E) = [, fdu for E € A.
Since f > 0, v is a positive measure and if p(E) = 0 then v(E) = 0. Hence v < p.
Conversely, if v(F) = 0, since f > 0, u(E) =0. So p < v. Thus, p ~ v. Since p is
o-finite ( by (a)), v is also o-finite.

(c) Since v is o-finite, % exists. By part (b), f = g—;. By chain rule,

du d
—N—V =1, p—a.e and v —a.e.on X.
dv dp
Thus,
d 1
ﬁz?, i—ae and v—a.e.on X. N
Problem 88

Let i and v be o-finite positive measures on (X, A). Show that there exist A, B €
A such that

ANB=@, ANB=X, u~v on (A, ANA) and plv on (B,ANB).

Solution

Define a o-finite measure A = y + v. Then p < X and v < A. By the Radon-
Nikodym theorem there exist non-negative A-measurable functions f and g such
that for every F € A,

W(E) = [E fdx and v(E) = /E gl

Let A={z € X : f(z)g(z) > 0} and B = A°. Then p ~ v. Indeed, f > 0 in A.
Thus, if 4(E) = 0, then A(F) = 0, and therefore, v(E) = 0. This implies v < p.
We can prove u < v in the same manner. Hence, 1 ~ v.

Let C ={x € B: f(x) =0}, D= B\C. For any measurable sets £ C C and
FcD, wFE)=v(F)=0. Thus, plv on (B,ANnB). N
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Problem 89
Let p and v be o-finite positive measures on (X, A). Show that there exists
a non-negative extended real-valued A-measurable function @ on X and a set

Ay € A with u(Ag) = 0 such that

v(E) = / edp +v(ENAg) for every E € A.
E

Solution
By the Lebesgue decomposition theorem,

V=V,+ Vs Vg Lty Vs Ly and v,(FE) = / edp for any E € A,
E

where ¢ is a non-negative extended real-valued .A-measurable function on X.
Now since v, L u, there exists Ay € A such that

1(Ap) =0 and vs(A5) =0.

Hence
(Ve < pand p(Ag) = 0] = 1,(Ag) =0. (%)

On the other hand, since vs(F) = vs(E N Ap) for every E € A, so we have

V(ENAy) = v (ENA) +uvs(ENAy) =vs(ENA) =vs(E).
=0 by (%)

Finally,

V(E) =v,(E) +vs(E) = / edp+v(ENA) forevery Ec A R

E
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Chapter 9

Differentiation and Integration

The measure space in this chapter is the space (R, My, ur). Therefore, we write
p instead of pg, for the Lebesgue measure. Also, we say f is integrable (derivable)
instead of f is uy-integrable (derivable).

1. BV functions and absolutely continuous functions

Definition 28 (Variation of f)
Let [a,b] C R with a < b. A partition of [a,b] is a finite ordered set P ={a =29 <1 < ... <z, =
b}. For a real-valued function f on [a,b] we define the variation of f corresponding to a partition

P by

n

V21, P) = |f(wr) = flwr-1)] € [0,00).

k=1
We define the total variation of f on [a,b] by

VIf) = sup V2(f,P) € [0,00],

where the supremum is taken over all partitions of [a,b]. We say that f is a function of bounded
variation on [a,b], or simply a BV function, if V(f) < oo.
We write BV ([a,b]) for the collection of all BV functions on [a,b].

Theorem 14 (Jordan decomposition of a BV function)

1. A function f is a BV function on [a,b] if and only if there are two real-valued increasing
functions g1 and g2 on [a,b] such that f = g1 — g2 on [a,b].

{g91,92} is called a Jordan decomposition of f.

2. If a BV function on [a,b] is continuous on [a,b], then g1 and g2 can be chosen to be continuous
on [a,b].

Theorem 15 (Derivability and integrability)
If f is a BV function on [a,b], then f' exists a.e. on [a,b] and integrable on [a,b].
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Definition 29 (Absolutely continuous functions)
A real-valued function f on [a,b] is said to be absolutely continuous on [a,b] if, given any e > 0,
there exists a 6 > 0 such that

Z |f(bk) — flax)| <e
k=1

for every finite collection {[ak, bk]}1<k<n of non-overlapping intervals contained in [a,b] with

> lbk —ak| < 6.
k=1

Theorem 16 (Properties)

If f is an absolutely continuous on [a,b] then
1. f is uniformly continuous on [a,b],

2. fis a BV function on [a,b],

3. ' exists a.e. on [a,b],

4. f is integrable on [a,b].

Definition 30 (Condition (N))
Let f be a real-valued function on [a,b]. We say that [ satisfies Lusin’s Condition (N) on [a,b] if
for every E C [a,b] with u(E) =0, we have pu(f(E)) = 0.

Theorem 17 (Banach-Zarecki criterion for absolute continuity)

Let f be a real-valued function on [a,b]. Then f is absolutely continuous on [a,b] if and only if it
satisfies the following three conditions:

1. f is continuous on [a,b].

2. f is of BV on |a,b].

3. f satisfies condition (N) on [a,b].

2. Indefinite integrals and absolutely continuous functions

Definition 31 (Indefinite integrals)
Let f be a extended real-valued function on [a,b]. Suppose that f is measurable and integrable on
[a,b]. By indefinite integral of f on [a,b] we mean a real-valued function F on [a,b] defined by

F(z) = fdu+ec, x€la,b andc€R is a constant.

[a,z]

Theorem 18 (Lebesgue differentiation theorem)

Let f be a extended real-valued, measurable and integrable function on [a,b]. Let F be an indefinite
integral of f on [a,b]. Then

1. F is absolutely continuous on [a,b],

2. F' exists a.e. on [a,b] and F' = f a.e. on [a,b],
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Theorem 19 Let f be a real-valued absolutely continuous on [a,b]. Then
[ ]f’d,uz f(x) = f(a), Va € [a,b].
a,r

Thus, an absolutely continuous function is an indefinite integral of its derivative.

Theorem 20 (A characterization of an absolutely continuous function)

A real-valued function f on [a,b] is absolutely continuous on [a,b] if and only if it satisfies the
following conditions:

(i) f' exists a.e. on [a,b]

(ii) f' is measurable and integrable on [a,b].

(iii) f[a’x] fldp = f(z) — f(a), Yo € [a,b].
3. Indefinite integrals and BV functions

Theorem 21 (Total variation of F')
Let f be a extended real-valued measurable and integrable function on [a,b]. Let F be an indefinite
integral of f on [a,b] defined by

F(x) = fdu+c, x€la,b].
[a,7]

Then the total variation of F' is given by

VI(F) = fldp.
(F) /[] s

Xk kk

Problem 90
Let f € BV ([a,b]). Show that if f > ¢ on [a,b] for some constant ¢ > 0, then
7 € BV ([a,b]).

Solution
Let P ={a =129 <z <..<ux, =0} be a partition of [a,b]. Then

(L oy Nl f(@) = flap )]
V;<f’7)>_kz_;'f($k) e Z ) f )]

Since f > ¢ > 0,

k— 1

[f(an) = o)l _ [f(an) = fza)]
|f(@p) f(zeaal)  — ¢ '
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It follows that
1 1 & 1 1
b _ b b
v, (?,77) < = 321 |f(xx) = f(xr—1)| = gva (f,P) < gVa(f)

Since V?(f) < oo, Vb(%) <oco. N

Problem 91
Let f,g € BV([a,b]). Show that fg € BV ([a,b]) and

Vi(fg) < S[uflfl V2(g) +S[u5 gl V2 (f).

Solution
Note first that f,g € BV ([a,b]) implies that f and g are bounded on [a,b]. There
are some 0 < M < oo and 0 < N < oo such that

M =sup|f| and N = sup]g]|.
[a,] [a,b]

For any =,y € [a,b] we have

|f(x)g(x) — f(y)g(y)] |f(x) = fW)llg(x)| + 1g9(z) — gl f(y)]
|

N|f(x) = fy)l + Mg(z) = g(y)| (+).
Now, let P = {a =9 < 21 < ... < z,, = b} be any partition of [a, b]. Then we have

Vo(fg,P) = Z!f(a:k)g(xk)—f(:kal)g(xkfl)l

< MZ\Q xr) — g(Tr—1 ‘+NZ|JC zk) = f(@r-1)]

< MVf(g, P)+ NV;(f,P).
Since P is arbitrary,

sup V(fg,P) < Msup V! (g, P) + Nsup V2(f,P),
P P P

where the supremum is taken over all partitions of [a, b]. Thus,

Vi(fg) < sup LV (g) + sup gl Vo (f). =
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Problem 92

Let f be a real-valued function on [a,b]. Suppose f is continuous on [a,b] and
satisfying the Lipschitz condition, that is, there exists a constant M > 0 such
that

|f(2) = f(2")] < M|2" — 2"|, V2!, 2" € [a, b].
Show that f € BV ([a,b]) and V2(f) < M(b— a).

Solution
Let P={a =29 <z <..<ux,=>b} be any partition of [a,b]. Then

VAEP) = D If(r) = flae-)]

< MZ(% — Tp_1)

k=1
< Mz, —x9) = M(b—a).
This implies that

Vi(f)=supVI(f,P) < M(b—a)<oco. W
P

Problem 93

Let f be a real-valued function on [a,b]. Suppose f is continuous on [a,b] and
is differentiable on (a,b) with |f'| < M for some constant M > 0. Show that
f € BV([a,b]) and VE(f) < M(b— a).

Hint:
Show that f satisfies the Lipschitz condition.

Problem 94
Let f be a real-valued function on [0, 2] defined by

_Jsinl fora e (0,2
J(@) = {0 for x = 0.

Show that f ¢ BV ([0, 2]).
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Solution
Let us choose a particular partition of [0, 2]:

2 2 2
o T 2 T+ 27 Tan—1 T+ 2n.2m 2

Then we have

Vi (£, P) = |f(@r) = flea)l + [ f(22) = F(@s)| + oo+ [ F(@a01) — Flan)
= 242+ ... 4+241=02n—-1)2+1.
2n—1
Therefore,
sup Vy" (f, P) = o0,
P
2

where the supremum is taken over all partitions of [0,2]. Thus, f is not a BV
function. W

Problem 95
Let f be a real-valued continuous and BV function on [0,1]. Show that

i S (1) - ()

2
=0.

Solution
Since f is continuous on [0, 1], which is compact, f is uniformly continuous on [0, 1].
Hence,

1
Ve>0,IN>0: |[z—y|< = = |f(z)— f(y)| <e Vx,y €[0,1].

N
Partition of [0, 1]:
2 n
To=0<r1=—<pm=—<..<z1,=-—=1
n n
For n > N we have ‘%—%‘:%S% Hence,

() (e
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Now we can write, for n > N,
0 i— 1\
(5)-(5)
n n

and so

IA
™

n

D

i=1

() ()]

Since Vi (f) < oo, we can conclude that

/() (%)

n—o0 4

Problem 96
Let (f; - i € N) and f be real-valued functions on an interval [a,b] such that
lim; o fi(x) = f(z) for = € [a,b]. Show that

V2(f) < liminf Vi (f;).

1— 00

Solution
Let P, ={a =29 < 21 < ... <z, = b} be a partition of [a,b]. Then

P.) = Z |f(2x) = flzi)l,
V2(fi, P) Z |fi(zy) — fi(xg—1)| for each i€ N.

Consider the counting measure space (N, P(N), v) where v is the counting measure.
Let D ={1,2,...,n}. Then D € P(N). Define

gi(k) = |fi(xr) = filae-1)] = 0,
g(k) = |f(xg) — f(xp_1)| for ke D.
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Since lim; ., f;(x) = f(x) for z € [a,b], we have

lim g;(k) = g(k) for every k€ D.

1—00

By Fatou’s lemma,

/Dg(k‘)dyz/l)ilirgogi(k)dygliminf/Dgi(k)dy. (%)

1—00

Since D = | |,_,{k} (union of disjoint sets), we have

/Dg(k;)dy = Z/{k}g(k)dy
= > g(k)

= D> 1f(wn) = flax)l

= VI(f, P).

Similarly, we get

gi(k)dv = V*(f;, P,) for each i€ N.
D

With these, we can rewrite (*) as follows:
Vo (f Pa) < liminf V(f, P).
By taking all partitions P,, we obtain
VE(f) <liminf VO(f;). W

1—00

Problem 97
Let f be a real-valued absolutely continuous function on [a,b]. If f is never zero,
show that % is also absolutely continuous on |a, b.

Solution
The function f is continuous on [a, b], which is compact, so f has a minimum on it.
Since f is non-zero, there is some m € (0, c0) such that

Jnin, |f (@) = m.
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Given any € > 0 there exists d > 0 such that for any finite family of non-overlapping
closed intervals {[a;,b;] : i =1,...,n} in [a, b] such that
Sor (b —a;) <6 we have Y | f(a;) — f(b;)] < e. Now,

n

L1 1£(a) = )]
2|7y ~ 7 Z e 0]
< WZV(%)—f(bM
< % m

Problem 98
Let f be a real-valued function on [a, b] satisfying the Lipschitz condition on [a, b].
Show that f is absolutely continuous on |a, b].

Solution
The Lipschitz condition on [a, b]:

3K > 0:Vr,y € [a,b], [f(z) - f(y)] < K|z -yl

Given any € > 0, let § = £. Let {[¢;,d;] : ¢ = 1,...,n} be a family of non-
overlapping subintervals of [a,b] with Y " ,(d; — ¢;) < 0, then, by the Lipschitz
condition, we have

=

Z\f(ck) — fldi)] < ZK(dk — k)

< KZ(dk: — Ck)

=1

< ngéf

Thus f is absolutely continuous on [a,b]. W

Problem 99

Show that if f is continuous on [a,b] and [’ exists on (a,b) and satisfies
|f'(x)] < M for x € (a,b) with some M > 0, then f satisfies the Lipschitz
condition and thus absolutely continuous on [a,b].
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(Hint: Just use the Intermediate Value Theorem.)

Problem 100

Let f be a continuous function on [a,b]. Suppose f' exists on (a,b) and satisfies
|f'(x)] < M for x € (a,b) with some M > 0. Show that for every E C [a,b] we
have

i (f(E)) < My (E).

Solution
Recall:

= inf {Zf([n) : I, are open intervals and U I, D E} )
n=1

n=1

Let E C [a,b]. Let {I, = (al,,b),)} be a covering of F, where each (a,b!) C [a,b].
Then
EcC U (a},,b,) = f(E)C Uf ((af, ).

Since f is continuous, f((al,,?,)) must be an interval. So

f((ana b;z)) (f(an)v f(bn)) for an,bn € (ay,,0;,).

Hence,

E)c|J(f(a

Therefore {(f(an), f(bn))} is a covering of f(E). By the Mean Value Theorem,

((F(@)s f0)) = 1F(ba) = flan)

= |f(@)|bn — anl, x € (an,bn)
< M|b, — ay-

It follows that

2 (@) 1)) < M3 b =] <MD,

< MZE ((al,, ).
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Thus,

ianE((f(an), ) < Mlnfz ((al,, b))

The infimum is taken over coverings of f(E) and FE respectively. By definition (at
the very first of the proof) we have

1y (f(E) < Mpj(E). |

Problem 101

Let f be a real-valued function on [a,b] such that f is absolutely continuous on
l[a + n,b] for every n € (0,b — a). Show that if f is continuous and of bounded
variation on [a,b], then f is absolutely continuous on [a,b].

Solution
Using the Banach-Zaracki theorem, to show that f is absolutely continuous on [a, b],
we need to show that f has property (N) on [a,b]. Suppose E C [a,b] such that
pr(E) = 0. Given any € > 0, since f is continuous at a™, there exists 6 € (0,b — a)
such that

a<z<a+d = [fl@)-f@l <5 (%)

Let £y = ENfa,a+ 9] and Fy = E\ Ey. Then F = E, U FE; and so f(E) =
f(EY)Uf(Ey). But Ey C [a+0,b) and f is absolutely continuous on [a+0,b], so f
has property (N) on this interval. Since Ey C FE, we have up(Es) = 0. Therefore,

On the other hand,

r€FE = xz€la,a+))
= (@) =5 < f@) < fla)+5 by ()
= f(E) C[f(@) -3, fla)+]

Thus,
pr(f(E)) < pp(f(EY)) + pp(f(E2)) <e
Since £ > 0 is arbitrary, pj (f(E)) =0 and so ur(f(£)) =0. W
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Problem 102
Let f be a real-valued integrable function on [a,b]. Let

F(z) = fdur, x € [a,b].

[a,x]

Show that F' is continuous and of bounded variation on [a,b].

Solution

The continuity follows from Theorem 18 (absolute continuity implies continuity).
To show that F'is of BV on [a,b], let a = 29 < 1 < ... < x,, = b be any partition
of [a,b]. Then

n

S| g
LTj—1,Tq

i=1
[ il
i=1 7 [Ti—1,2]

- / Fldps.
[a,b]

Z |F(ZL‘Z — l’i_1| =
=1

n

Thus, since |f| is integrable,

VH(F) < / Fldps < 0. ®
[a,b]
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Chapter 10
LP Spaces

1. Norms
For0<p<oo:

1/p
IIfIIp(/XfI”du> .

[ flloo = inf{M € [0,00) : p{z € X : |f(z)] > M} =0}.

For p=o0:

Theorem 22 Let (X, A, ) be a measure space. Then the linear space LP(X) is a Banach space
with respect to the norm ||.||, for 1 < p < oo or the norm ||.||ec for p = 0.

2. Inequalities for 1 < p <
1. Holder’s inequality: If p and q satisfy the condition % + % =1, then for f € LP(X), g € LY(X),

we have y y
P q

du = Pd q4d
/X|fgw (/Xm u) (/X|g| u) ,

[£glly < 11fllpllgllq-

or
In particular,
£l < [ fll2llgll2 (Schwarz’s inequality).
2. Minkowski’s inequality: For f,g € LP(X), we have
1+ gllp < £ 1o+ lgllp-

3. Convergence

Theorem 23 Let (f,) be a sequence in LP(X) and f an element in LP(X) with 1 < p < co. If
fo — fin LP(X), i.e, || fn — fllp — O, then

(1) [l fnllp = 1 £l

(2) fn — fon X,

(8) There exists a subsequence (fy, ) such that f,, — f a.e. on X.
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Theorem 24 Let (f,) be a sequence in LP(X) and f an element in LP(X) with 1 < p < co. If
fn—= [ ae on X and || fully = [|fllp, then || fo = fllp — 0.

Theorem 25 Let (f,) be a sequence in LP(X) and f an element in LP(X) with 1 < p < co. If
fa = fon X and | fallp — | fllp, then || fo — fllp — 0.

Theorem 26 Let (f,) be a sequence in LP(X) and f an element in LP(X) with 1 < p < oco. If
[l fr = flloo — 0, then

(1) [ falloo = I flloos
(2) fn— [ uniformly on X \ E where E is a null set.

(3) fu 2 f on X.

Problem 103
Let f be a Lebesque measurable function on [0, 1]. Suppose 0 < f(z) < oo for all

x € [0,1]. Show that
1
() (o)
0,1] 0,1

Solution
The functions +/f and % are Lebesgue measurable since f is Lebesgue measurable
and 0 < f < 0o. By Schwarz’s inequality, we have

()" ([ () o)

1/2 1 1/2
(o) ()
[0,1] o f
Squaring both sides we get

( /[ . fdu) ( /[ . ldu) > m

1/2

IN

1
- / tp= | /T —=dp
[0,1] [0,1] \/_ \/7

IN
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Problem 104
Let (X, A, 1) be a finite measure space. Let f € LP(X) with p € (1,00) and q its

conjugate. Show that
1
[ 1 < w0t ( / If!pdu) |
b's b's

Hint:
Write
f=rflx

where 1x is the characteristic function of X, then apply the Holder’s inequality.

Problem 105

Let (X, A, p) be a finite measure space.

(1) If 1 <p < oo show that L*(X) C LP(X).

(2) If 1 <p; <py<oo show that LP*(X)C LP(X).

Solution

(1) Take any f € L>°(X). Then || f||c < co. By definition, we have |f| < |||« a.e.
on X. So we have

/ Pdp < / V12 dp = p(X) |2
X X

By assumption, u(X) < co. Thus [, |f|Pdu < oo. That is f € LP(X).
(2) Consider the case 1 < p; < ps < 00. Take any f € LP?(X). Let o := 2. Then

p1
l < a< oo Let § € (1,00) be the conjugate of «, that is, i%—% = 1. By the

Holder’s inequality, we have

P, — p2\1/q 4
/X\f! , /X(\f\ )Y cdu

1/a 1/8
P2 B8
< (/X|f| du) (/X|1X| du)

= | flI5/n(X) < oo,

since || flp, < oo and p(X) < oo. Thus f € L (X). N
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Problem 106 (Extension of Holder’s inequality)

Let (X, A, 1) be an arbitrary measure space. Let fi, ..., f, be extended complex-
valued measurable functions on X such that |fi|,....|fn] < 00 a.e. on X. Let
D1, -, Pn be Teal numbers such that

1 1
D1y --3Pn € (1700) and — +..+—=1.
y4i Pn
Prove that
[frfalle < N fillpr- [ fallpn- (%)
Hint:

Proof by induction. For n = 2 we have already the Holder’s inequality.
Assume that (%) holds for n > 2. Let

Then

1 1
¢ Pny1 € (0,00) and — + =1

q Pn+1

Keep going this way.

Problem 107

Let (X, A, i) be an arbitrary measure space. Let fi, ..., f, be extended complex-
valued measurable functions on X such that |fi|,....|fn] < 00 a.e. on X. Let
D1y ..y P and v be real numbers such that

1 1 1
Plyes Py 7 € (1,00) and — + ...+ —=—-. (i)
yai Pn r
Prove that
[ frfulle < W fillpy-l fallp, -
Solution

We can write (i) as follows:

1 1

—t ...+ — =1
pl/r pn/T
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From the extension of Holder’s inequality (Problem 105) we have

£l Il < AT 1 £a1"]] (i4)

o] o

Now we have

i tul ], = /X ool = | frofull

and for 2 = 1,...,n we have

5l = (frara) ™ = (1

By substituting these expressions into (i7), we have

vl < WSl [l -

Taking the r-th roots both sides of the above inequality we obtain (). W

T/Di
rau) = I

T
pi°

Problem 108
Let (X, A, ) be a measure space. Let 0 € (0,1) and let p,q,r > 1 with p,q > r

be related by
1 0 1-4

r p q
Show that for every extended complex-valued measurable function on X we have

11l < IR

Solution
Recall: (Extension of Holder’s inequality)

11 1
S= = = Sl < N ol
F o o [f1efulle S W llps 1l

For n = 2 we have ]

1 1
—=—+— = |fgll- < I fllpllglle-
sty = Il < 0fllglly

Now, we have
1 6 1-4 1 1

rp g T pltga-o
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Applying the above formula we get
1l = [LAPASE) < Ao I, - )

Some more calculations:
0/p
/6
e = ([ ary”)

0/p
- ()
X
= |I£1°.
1-0/q
- —p\a/1-0
Ny = ([ 07)

- ([ i) o

= Ifl™"

And

Plugging into (*) we obtain
17l < 1A A0 .

Problem 109

Let (X, A, ) be a measure space. Let p,q € [1,00] be conjugate. Let (fp)nen C
LP(X) and f € LP(X) and similarly (gn)neny C LYX) and g € LY(X). Show
that

i [lfu = flly =0 and lim [lga = glly=0] = Tim | faga — Folli = 0.

Solution
We use Holder’s inequality:

< / (fatn — Fogl + 1fag — Fal)dp

X
< /erug g!u+/X!9Hf fldp
< N fallplgn = glla + glhalfn = Fllo ()
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By Minkowski’s inequality, we have

[fullp < ANl + W1 = -

Since || f||, and || f, — f||, are bounded (why?), || f.||, is bounded for every n € N.
From assumptions we deduce that lim,, . || fullp-1lgn — 9/l = 0.

Since ||gl|, is bounded, from assumptions we get lim,, .« ||gl4-|| fn — fll, = 0. There-
fore, from (*) we obtain

Problem 110

Let (X, A, ) be a measure space and let p € [1,00). Let (fn)nen C LP(X) and
f € LP(X) be such that im,_.« ||fn — fll, = 0. Let (gn)nen be a sequence of
complex-valued measurable functions on X such that |g,| < M for every n € N

and let g be a complez-valued measurable function on X such that lim, .. g, = ¢
a.e. on X. Show that

Solution
We first note that |g| < M a.e. on X. Indeed, we have for all n € N,

9] < [gn — 9] + [gnl.

Since |g,| < M for every n € N and |g, — g| — 0 a.e. on X by assumption. Hence
lg| < M a.e. on X.
Now, by Minkowski’s inequality, we have

[fngn = Fally < [[fngn = Fonllp + [1F g0 = Fallp
< Mgn(fo = Dllp + 1 (9 = 9)llp - ()

Some more calculations:

gn(fn = OIF (fn — f)[Pdp

|
=)
3

X

/ gnlP. 1 fo — P
X

< Mfu— 1l

IN
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Since || fn — fll, — 0 by assumption, we have that ||g,(f. — f)|[, — 0.
Let h,, = fg, — fg for every n € N. Then

(| < fI-gn — gl < | f1(gnl +1g]) < 2M]f]
IhalP < 22 MP|f]P < .

Now, |h,|P is bounded and |h,|P < |f[P.|gn — 9" = |hn|P — O (since g, — g a.e.).
By the Dominated Convergence Theorem, we have

0:/ lim |h,|Pdp = lim [ |h,|Pdu
b X

n—00 n—o0
— Jim [ Ifg.~ foPds
= lim |[f(g. = 9)II}-
From these results, (*) gives that

Problem 111
Let [ be an extended real-valued Lebesque measurable function on [0, 1] such that

f[o 1 |fIPdp < oo for some p € [1,00). Let q € (1,00] be the conjugate of p. Let
€ (0,1]. Show that

_ 1
lim - o | fldp = 0.

Solution

e p=1
Since ¢ = 0o, we have to show

liII(l) / |f(s)|ds =0 (Lebesgue integral = Riemann integral).
a— 0

This is true since f is integrable so [ |f(s)|ds is continuous with respect to a.

e 1l <p<
Then 1 < ¢ < co. We have

[l = [Cielas

< (o [C1seo1as) " (Problem 104

= o [C1reas) v
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Hence,

ﬁ/ﬂav(s)\ds < (/anf(s)yds>l/p (%)

Since |f] is integrable, we have! (Problem 66)

Ve >0, 30 >0: u([0,a]) <6 = |fldu < €P.
[0,a]

Equivalently,

a 1/p
Ve>0,30>0: 0<a<d= </ |f(5)\ds> <e. (xx)
0
From (*) and (**) we obtain

1 a
Ve>0,30>0: 0<a<d= 1—//|f(s)|ds<6.
a1 Jq

That is,

li !

/Oa f(s)|ds=0. W

Problem 112

Let (X, A, p) be a finite measure space. Let f,, f € L*(X) for alln € N such
that lim, .o f, = f a.e. on X and || f,|l2 < M for all n € N.

Show that lim, . || fn — fll1 = 0.

Solution
We first claim: ||f||2 < M. Indeed, y Fatous’ lemma, we have

118 = [ \7Pdn < timint [ 15 < 2
X n—oo X
Since p(X) < oo, we can use Egoroff’s theorem:

Ve >0, 3A € A with u(A) <e? and f, — f uniformly on X \ A.

Now we can write

IIfn—flllz/XIfn—flduz/Alfn—flduvL/X\Alfn—fldﬂ-

! This is called the uniform continuity of the integral with respect to the measure fi.
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On X\ A, f, — f uniformly, so for large n, we have fX\A |fr — fldp < €. On A we
have

/Ifn—flduz/ o= flxadi < n(AY20F — I
A X

p(AY2 ([ falla + 11 £112)
2Me (since u(A) < &?).

Thus, for any € > 0, for large n, we have
1fo = flli £ (2M 4 1)e.

This tells us that lim, . ||fn, — flL =0. W

Problem 113

Let (X, A, ) be a finite measure space and let p,q € (1,00) be conjugates. Let
fn, [ € LP(X) for alln € N such that lim,,_. f, = f a.e. on X and ||f,|l, <M
for all n € N. Show that

(@) |Ifll, < M.

(8) Ty | fo— fllp = 0.

(¢) limy, oo [ fogdp = [y fgdu for every g e LI(X).

(d) limy, .o [ frdp = [, fdu for every E € A.

Hint:

(a) and (b): See Problem 112.

(c) Show [ fng = fglls < |[fn = fllpllgllq- Then use (b).
(

d) Write
| o= [ fute= [ rre)
Then use (c).

Problem 114
Let (X, A, p) be a measure space. Let f be a real-valued measurable function on
X such that f € LY(X) N L>(X). Show that f € LP(X) for every p € [1,00].

Hint:
If p=1 or p = oo, there is nothing to prove.
Suppose p € (1,00). Let f € LY(X) N L>®(X). Write
[FIP = AP < A1

Integrate over X, then use the fact that || f||; and ||f|le are finite.
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Problem 115
Let (X, A, p) be a measure space and let 0 < p; < p < py < 00. Show that

LP(X) C L (X) + LP(X),

that is, if f € LP(X) then f = g+h for some g € L*(X) and some h € LP*(X).

Solution
For any f € LP(X), let D ={X: |f| > 1}. Let g = f1p and h = flpc. Then

g+h=flp+ flpe = f(1p +1p:) = f (See Problem 37).

=1pupec

We want to show g € LP*(X) and h € L (X).
On D we have : 1 < |[f[P* <|f|P < |f[P2. Tt follows that

[ laldi= [ 1dn < [ 15vdn < oo since £ e (x),
X D X

Hence, g € LP'(X).
On D¢ we have : |f|P* > |f|P > | f|P>. It follows that

Jomran= [ ispaus [ ifran< e
X Dec X

Hence, h € LP2(X). This completes the proof. W

Problem 116
Given a measure space (X, 2, p). For 0 <p <r < q < oo, show that

LP(X)N LX) C L7(X).

Hint:
Let D={X: |f| >1}. On D we have |f|” < |f|?, and on X \ D we have |f|" <|f|P.
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Problem 117
Suppose f € L*([0,1]), ||flla=C >1 and ||f]la = 1. Show that

1

— < 3 < 1.
& < fllys <

Solution
First we note that 4 and 4/3 are conjugate. By assumption and by Hélder’s inequal-

ity we have
[ 1s1As1dn
(0,1]

< N flla-[[fllays
< O fllays-

L= 1= [ 1fPd
(0.1]

This implies that || fllas > 5. (%).
By Schwrarz’s inequality we have

4/3
LIS = / 1 = / LAy
[0,1] [0,1]

< Nl =1 since || f]lo = 1.

Hence, || fllas < 1. (%)
From (*) and (**) we obtain
1

— < <l n
& < fllys <

Problem 118
Let (X, A, 1) be a measure space with pu(X) € (0,00). Let f € L®(X) and let
oy = [ |f[*dp for n € N. Show that

. [0
lim — = || f[|oc.
n—oo an

Solution
We first note that if || f||oc = 0, the problem does not make sense. Indeed,

Ifllo=0 = f=0 ae on X
= a,=0, VneN.
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Suppose that 0 < || f|lec < 0. Then «,, > 0, Vn € N. We have

Q41 —/ |7|n+1dﬂ = / |f|”|f|d,u
I£1 /Ifl =l

IA

This implies that

Bt )1 #loe, Y € N,

n

Qn
= lim sup aH < | flloo- ()

n—oo n

Notice that ”T“ and n + 1 are conjugate. Using again Holder’s inequality, we get

ou= [urran < (famea)™ ([ 1)
= (/X(Iflw)du)nil.u()()ﬁl

T 1
= apiy-p(X)m

With a simple calculation we get

Oy 1 Pt _1
> ap . pu(X) T, Vnoe N

Op

Given any € > 0, let E = {X : |f| > [|fllo — €}, then, by definition of || f||~, we

have p(E) > 0. Now,
1
% n+1 e
ot = ([asra)
X

(f (Ifl”“)du)nil

>
> (B (|| flloo — ©)-
It follows that
i1 u(E)]™
22> (1l - o) [ 4]

Qi1

= lim inf > |flleo —€, Ye>0
n—oo n
Apq1

2 [[flloo- (%)

= liminf
n—oo n
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From (*) and (**) we obtain

. 07
lim — = || f]l. M

n—oo  (p

Problem 119

Let (X, A, ) be a measure space and p € [1,00).

Let f € L*(X) and (f, : n € N) C LP(X). Suppose lim,_.« || fn — fll, = 0.
Show that for every e > 0, there exists 6 > 0 such that for all n € N we have

/ |fulPdu < e for every E € A such that p(E) <.
B

Solution
By assumption we have lim, .., || f, — f||5 = 0. Equivalently,

9
op+1° (1)

Ve>0, INeN: n>N=|f. - f|}) <

From triangle inequality we have?

[l < (o = ST 1P <2700 = 17+ 271117,

Integrating over £ € A and using (1), we get for n > N,

P < 2P — f|rd oPp Pd
géﬁl/ﬁ< Agf flPdp + L!ﬂ i
210 n — p 2p Pd

| f = fFIIB + JéV!u

IN

€
g5 v

= 52 [ @

IA

2In fact, for a,b > 0 and 1 < p < 0o we have

(a4 b)P < 2P~ (aP 4 bP).
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Since |f|P is integrable, by the uniform absolute continuity of integral (Problem 66)
we have

£
350 > 0 : M(E)<50:>/E|f|pdu<2p+1.
So, for n > N, from (2) we get

3

=c. (3)

5
4o > 0: p(E) < dp = /E | fnlPdp < 5 +2p.2p+1
Similarly, all |f1]?, ..., |fv—1|P are integrable, so we have
30, >0: p(E) <o, = / |filPdu <e, j=1,.,N—1. (4)
E

Let § = min{dy, d1,..,dn_1}. From (3) and (4) we get for every n € N,

36>0: u(E)<5:>/|fn|pdu<e. [ |
E

Problem 120
Let f be a bounded real-valued integrable function on [0,1]. Suppose
f[o 1 2" fdu =0 forn=0,1,2,.... Show that f =0 a.e. on [0,1].

Solution
Fix an arbitrary function ¢ € C|0, 1]. By the Stone-Weierstrass theorem, there is a
sequence (py,,) of polynomials such that ||¢ — ppllec — 0 as n — oo. Then

fs@du‘ = f(so—pwpn)du’
[0,1] [0,1]
S/ |l 1 — paldp + fpndu‘
[0,1] [0,1]
< Hfulngo—pnuw\/[ ]fpndu’
0,1

=0 by hypothesis
= [flhlle = pallo-

Since [| fllx < 00 and [l = paloc — 0, we have

feodu =0, Yo € C[0,1]. ()

[0,1]
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Now, since C0,1] is dense in L'[0, 1], there exists a sequence (¢,) C C0, 1] such
that ||¢n, — flli — 0 as n — oco. Then

0< f2du = ’
[0,1] [0,1]

< [ uis=nldu| [ fonad
[0,1] [0,1]

=0 by (*)

< N llsollf = spnllr-

Since |[f]loe < 00 and [|f —¢nli — 0, we have

f2dp = 0.
[0,1]

Thus f =0a.e. on [0,1]. W

Problem 121

Let (X, A, n) be a o-finite measure space with u(X) = oc.

(a) Show that there ezists a disjoint sequence (E, : n € N) in A such that
Unen En = X and p(E,) € [1,00) for every n € N.

(b) Show that there ezists an extended real-valued measurable function f on X
such that f ¢ LY(X) and f € LP(X) for all p € (1,00].

Solution

(a) Since (X, A, i) is a o-finite measure space, there exists a sequence (A, : n € N)
of disjoint sets in A such that

X = U A, and u(A,) < oo,Vn € N.

neN

By the countable additivity and by assumption, we have

neN
It follows that
k1
JkeN: 1< Z,u(An) = p(A1U...UAy) < 0.
n=1
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Let Fy = Ay U ... U Ay, then we have
1 <p(E) <oo and p(Ag+1UAg2U.) =pu(X \ Ep) = 0.
Then there exists ko > k1 + 1 such that
1 < p(Ag 41U ... UA,) < oo.
Let By = Ag, 11 U ... U Ay, then we have
1< u(BE;) <oo and E;NE; =0.

And continuing this process we are building a sequence (E, : n € N) of disjoint
subsets in A satisfying

UJE.=JA. =X and wE,)€[1,00), ¥neN.

neN neN

(b) Define a real-valued function f on X = J, .y An by
f= =
; n(Ay)
Then ] ]
fAl :—7"'7fAn: y e
| 1p(Ay) | nu(A,)
Hence,

/deuziénfdu:iizoo.

That is f ¢ L'(X).
We also have

Ply = — . fP = ——— (1
f |A1 17’/1/(./41)17’ 7f ’An ( <p< OO)

By integrating

| pan = [ g

IN
(]
| —
A
8
Z.
=
3
E
N
S
]
L
\%
—

Thus, f € LP(X). N
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Problem 122

Consider the space LP([0,1]) where p € (1, 00].

(a) Prove that || f||, is increasing in p for any bounded measurable function f.
(b) Prove that || f||, — || fllcc when p — oo.

Solution

(a)
e Suppose 1 < p < co. We want to show || f|, < || f|leo-
By definition, we have

[fI < I fllo a-e. on [0, 1].

Therefore,

17 < WIf1[% a-e. on [0,1].

= |Nms/ 17112 dy
] [0,1]

0,1

= [IfIl; < [1F 11 w([0,1])
= 171> < [ flloo-

e Suppose 1 < p; < py < co. We want to show || f|l, < || fl]p,-

Notice that

— 1 1
brop27h_q + =1.

P2 D2 p2/p1 - p2/(p2 — p1)
By Holder’s inequality we have

1l = / frde = / P Ly
[0,1] [0,1]

< H’f’plHp2/p1"|1Hp2/(P2*P1)
= fls /- (%)

vy p1/p2
e, = ( / |f|p1~mdu)
(0,1]
P1~%
= ([ )" =
[0,1]

Finally, (*) implies that | f]l,, < [|f],s
In both cases we have

Now,

1< p1 < p2 =— Hf”m S HfHPQ
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That is || f||, is increasing in p.

(b) By part (a) we get || f[|, < |[f]l. Then

limsup || fllp < || fllee- ()

p—00

Given any € > 0, let E={X : |f| > || flloc —€}. Then u(E) > 0 and

1] > / Pdi > (Ifllse — €)Pu(E).

= £l = (1flloo — )l £)?
= liminf || f||, > || fllc — &, Y& >0 (since lim p(E)Y? =1).
p—00

p—00
= lminf £l > | fll )

From (i) and (ii) we obtain

tim (|}, = [1/]]c.
p—00
k ok skek

APPENDIX

The LP Spaces for 0 <p < 1
Let (X, A, 1) be a measure space and p € (0,1). It is easy to check that LP(X) is a linear space.

Exercise 1. If ||f]l, := ([x \f|pdu)1/p and 0 < p < 1, then ||.||, is not a norm on X.
Show that |.||, does not satisfy the triangle inequality:
Take X = [0, 1] with the Lebesgue measure on it. Let f = 1,1y and g = 11 ;). Then show that

1f +gll, = 1.

and that ) )
[fll, =277 and [g[l, =27".

It follows that
1+ allp > 11 fllp + lgllp-

Exercise 2. If o, € C and 0 < p < 1, then
la+ B17 < |af” + |af?.

Hint:
Consider the real-valued function ¢(t) = (1 +¢)? —1 -7, t € [0,00). Show that it is strictly
decreasing on [0,00). Then take t = UI > 0.

|
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Exercise 3. For 0 <p <1, |.||; is not a norm. However

pp(f,9) 1:/ |f —gl|Pdu, f,g€ LP(X)
b
is a metric on LP(X).

Proof.
We prove only the triangle inequality. For f,g,h € LP(X), we have

pp(frg) = /le—glpdu

/|q—hwuh—mww
X

IN

0= nl+ 1b = ghra
X

IN

/ |f — h|Pdu + / |h — g|Pdp (by Exercise 2)
X X
pp(fa h) +pp(hag) .

* ok ok
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Chapter 11

Integration on Product Measure
Space

1. Product measure spaces

Definition 32 (Product measure)
Given n measure spaces (X1, A1, 1), ...y (Xn, An, pin). Consider the product measurable space
(X1 X oo X Xp,0(A1 X o X An)) A measure p on o(Ay X ... X A,,) such that

WE) = p1(Ar)epun(Ay) for E=A1 x ... x Ay € Ap X ... X Ay,
with the convention 00.0 = 0 is called a product measure of 1, ..., by, and we write

W= 1 X ... X [y

Theorem 27 (Eristence and uniqueness)

For n arbitrary measure spaces (X1, A1, 41); -, (Xny An, tin), a product measure space (X1 X oo X
X, 0(Ap X oo X Ap)y g X o X un) exists. Moreover, if the n measure spaces are all o-finite, then
the product measure space is unique.

2. Integration

Definition 33 (Sections and section functions)

Let (X x Y,0(Ax B), uxv) be the product of two o-finite measure spaces (X, A, p) and (Y, B,v).
Let EC X XY, and f be an extended real-valued function on E.

(a) For x € X, the set E(z,.):={y €Y : (z,y) € E} is called the x-section of E.

ForyeY, the set E(.,y) :={x € X : (z,y) € E} is called the y-section of E.

(b) For xz € X, the function f(x,.) defined on E(x,.) is called the x-section of f.

Fory €Y, the function f(.,y) defined on E(.,y) is called the y-section of f.

Proposition 24 Let (X><Y7 o(AxB), uxu) be the product of two o-finite measure spaces (X, A, u)
and (Y,B,v). For every E € o(A x B), v(E(z,.)) is a A-measurable function of v € X and
,u(E(.7 y)) is a B-measurable function of y € Y. Furthermore, we have

() (B) = [ (B utdn) = [ u(Bln)viay)

X
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Theorem 28 (Tonelli’s Theorem)
Let (X xY,0(A x B),u x v) be product measure space of two o-finite measure spaces. Let f be a
non-negative extended real-valued measurable on X xY. Then

(a) Fl(z = [y f(z,.)dv is a A-measurable function of x € X.

(b) F*(y):= [y f(y)dp is a B-measurable function of y € Y.

(c) fXxydeXV)ZfXFld,UZfYFQdV, that is,

[ o= e [ o]

Theorem 29 (Fubini’s Theorem)
Let (X xY,0(A x B),u x v) be product measure space of two o-finite measure spaces. Let f be a
u X v-integrable extended real-valued measurable function on X xY. Then

(a) The B-measurable function f(x,.) is v-integrable on Y for p-a.e. x € X and the A-
measurable function f(.,y) is p-integrable on X for v-a.e. y €Y.

(b) The function Fl(x) = fY Jdv is defined for p-a.e. x € X, A-measurable and pu-
integrable on X.
The function F?(y fX y)dv is defined for v-a.e. y € X, B-measurable and v-

integrable on Y .

(¢c) We have the equalities: [y fd(pxv) = [y Ftdu = [, F?dv, that is,
[ gy = [ [ st do= [ | o] av

Xk okk

Problem 123
Consider the product measure space (R X R, 0(Bg X Bg), jt1, X ,uL).
Let D = {(z,y) e RxR: z =y}. Show that

D € o(Bg x Bg) and (ug x pg)(D) = 0.

Solution
Let A\ = pup X pp. Let Dy = {(z,y) € [0,1] x [0,1] : z = y}. For each n € Z let
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D, = {(x,y) € [n,n+ 1] X [n,n+ 1] : x = y}. Then, by translation invariance of
Lebesgue measure, we have
A(Dy) = X(D,,), Vn € N.
and D = U D,,.

neL

To solve the problem, it suffices to prove Dy € o(Bg x Bgr) and A(Dy) = 0.
For each n € N, divide [0, 1] into 2" equal subintervals as follows:

1 1 2 2" — 1
Lii=10,—| Inz=|= |, Lnon = 1.
=P s ] e =[]

Let S, = Ur—y (Inx X Inz), then Dy = lim,, .o S,.
Now, for each n € N and for £ =1,2,...,2", I, € Bg. Therefore,

]n,k X ]mk S O'(BR X BR) and so S, € O'(BR X BR)

Hence, Dy € o(Br %X Bg).
It is clear that (5,,) is decreasing (make a picture yourself), so

DO = li)m Sn = ﬁ Sn.
n=1

And we have

271
ASw) = D> AMInk X Lg)
k=1

R B RIS
p onon 2
It follows that
A(Dg) < A(S,) = 2%, Vn € N.

Thus, A(Dg) =0. N

Problem 124
Consider the product measure space (R x R, o(Bg X Bg), i X pr). Let f be a
real-valued function of bounded variation on [a,b]. Consider the graph of f:

G={(r,y) eRxR: y=f(z) for v € R}

Show that G € o(Br x Br) and (g x pup)(G) = 0.
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Hint:
Partition of [a, b]:
P={a=xzp<x; <..<x, =0}
Elementary rectangles:
Rn,k} = [xk}—hxk] X [mkaMk?]? k= 17 e,

where
mrp= inf  f(z) and My= sup f(x).

TE€[TK—_1,Tk] TE[TR—1,Tk]
Let
n
R, = kL_Jl R, and ||P| = 1r§nka%<n(xk — ZTp_1).
Let A = pr, X pp. Show that

AR, < |PIS"(My, —mi) < |PIVE(S).
k=1

Problem 125
Let (X, A, p) and (Y, B,v) be the measure spaces given

X =Y =10,1]
A =B = B, the o-algebra of the Borel sets in [0, 1],

W= pr and v 1s the counting measure.

Consider the product measurable space (X xY,0(A x B)) and a subset in it
defined by E = {(z,y) € X xY : z =y}. Show that

(a) E€o(AxB),

(b) /X ( /Y xEdu) dy # /Y ( /X xEdu) av.

Why is Tonelli’s theorem not applicable?

Solution
(a) For each n € N, divide [0, 1] into 2™ equal subintervals as follows:

1 1 2 2" — 1
Lii=10,—| Inz=|= | Lnon = 1.
=P s ] e =[]

Let S, = Uin:l(lnk X I 1). It is clear that (S,,) is decreasing, so

E = limSn:ﬁSn.

n—oo
n=1
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Now, for each n € N and for k =1,2,...,2", I, € Bp. Therefore,
[n,k X L%k € O'(B[o,l] X 8[071]) and so Sn € 0(8[071] X B[O,l})-

Hence, E € o(Bj,1) X Bjo)-
(b) For any z € X, 1g(z,.) = 1(3;(.). Therefore,

/ 1pdy = / 1ydv = v{z} = 1.
Y [0,1]

([ o) du:/[m] =1 (s

On the other hand, for every y € Y, 15(.,y) = 14 (.). Therefore,

Hence,

/ 1pdp = / Liyydp = pfy} = 0.
X [0,1]

/Y(/X 1Edu) dv = /m,u Odp = 0. (+)

Thus, from (*) and (**) we get

[ (o) [ (o)

Tonelli’s theorem requires that the two measures must be o-finite. Here, the counting
measure v is not o-finite, so Tonelli’s theorem is not applicable. W

Hence,

Question: Why the counting measure on [0, 1] is not o-finite?

Problem 126

Suppose g is a Lebesgue measurable real-valued function on [0,1] such that the
function f(x,y) = 2g(x) — 3g(y) is Lebesgue integrable over [0,1] x [0,1]. Show
that g is Lebesque integrable over [0, 1].
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Solution
By Fubini’s theorem we have

[ e <) = [ e

= [ [ o) - saiasay

_ /O 1 /0 oga)dady — /O 1 /0 ' g(y)dudy
_ 2/019@5) (/011.@)61:5—3/019@) (/Oll.dx>dy
_ 2/0 o(x)1.dz —3 /Olg(y).l.dy

/Og Jdx —3 /19(y)dy
] /g

Since f(x,y) is Lebesgue integrable over [0, 1] x [0, 1]:
[ i) < pul)
(0,1]x[0,1]

/0 1 g(x)dx

That is g is Lebesgue (Riemann) integrable over [0,1]. 1

|
DO

=]

< 00.

Therefore,

< OQ.

Problem 127
Let (X, 9, 1) be a complete measure space and let f be a non-negative integrable
function on X. Let b(t) = u{x € X : f(x) > t}. Show that

/X Fdp = /0 (et

Solution
Define F': [0,00) x X — R by

Flt.2) = 1 if0<t< f(x)
0 it > f(w).
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If B, ={zx e X: f(x) >t} then F(t,x) = 1, (x). We have

Ammemp:Aﬂ”F@xmnﬁA:Fuwmﬁ:ﬂ@+ozfu)

( [ dt) &

(AWF@medx

j(/F@@M)ﬁ
§/11E41gdx)(ﬁ

b(t)dt. (since pu(E;)=>b(t)). N

By Fubini’s theorem we have

/deuz

|
—

>

b

Il
Nc\g\

Problem 128
Consider the function u : [0,1] x [0,1] — R defined by

m%w—{éi%2 for (z,y) # (0,0),
0 fOT’ (l‘,y) — (0,0)

(a) Calculate

/01 (/01 u(x,y)dy) dr and /01 (/01U(:c,y)dx) dy.

Observation?
(b) Check your observation by using polar coordinates to show that

J[ 1t iy = o,

that s, w 1s not integrable. Here D 1is the unit disk.

Answer.
(a) 7 and —7%.

www.MathVn.com - Math Vietnam



www.MATHVN.com - Anh Quang Le, PhD

148 CHAPTER 11. INTEGRATION ON PRODUCT MEASURE SPACE

Problem 129
Let

10,1], R, = [0, 50),
1
flu,v) = T ure

g(x,y,t) = f(x,t) f(y,t), (z,y,t) € I x I xRy :=J.

(a) Show that g is integrable on J (equipped with Lebesque measure). Using
Tonelli’s theorem on Ry x I x I show that

arctant 2
A= /gdtdxdy:/ ( ) dt.
J R, t

(b) Using Tonelli’s theorem on I x I x Ry show that

1
A:z/ dzxdy.
2 Jixizty

(¢) Using Tonelli’s theorem again show that A = wln 2.

Solution
(a) It is clear that g is continuous on R?, so measurable. Using Tonelli’s theorem on
R, x I x I we have

A = /R( IXIf(x,t)f(y,t)d:pdy) dt
- /R+ (/If(x,t) </If(y,t)dy) dx) dt
- [ (Ui ) ([ o)) o
[ ([ )
_ /R+ (arcttantydt

Note that for all £ € Ry, 0 < arctant < 7 and arctant ~ ¢ as t — 0, so

2
s / (arctant) it < oo,
Ry 13
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Thus g is integrable on J.
(b) We first decompose g(x,y,t) = f(z,t)f(y,t) into simple elements:

1 1
1+ 221271 + 3212

g(z,y,t) = f(z,t) f(y,t) =

B 1 [EQ y2
o2 =y [T 1422

Using Tonelli’s theorem on I x I x R, we have

1 x2 y2
A = — dt | dxd
/m </R+x2—y2 [Hw?t? 1+y2t21 ) e
1 x Y
= _ — ds | dzd
/Maﬁ—zﬂ (/R [1+s2 1+32} S) B
1 [o¢]
[t ([ i)
IX[IE"‘y 0 1+32

1
= ﬁ/ dxdy.
2 Jixrrt+y

(c) Using (b) and using Tonelli’s theorem again we get

1/ M
(e
2Jo \Jo z+y
1
= z/ In(x 4+ 1) — Inx]dx
2 Jo
1

= g[(a:—i-l)ln(x—i-l)—xlnx]izozﬂlnz [
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Chapter 12

Some More Real Analysis
Problems

Problem 130

Let (X, M, 1) be a measure space where the measure p is positive. Consider a
sequence (Ap)nen in M such that

Z,LL(An) < 00.
n=1
Prove that
n=1k>n
Hint:

Let B, = Uys, Ak- Then (By) is a decreasing sequence in M with

u(Br) =3 p(An) < .

Problem 131

Let (X, M, i) be a measure space where the measure  is positive.

Prove that (X, M, i) is o-finite if and only if there exists a function f € L'(X)
and f(z) >0, Vo € X.
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Hint:

o Consider the function -

_ 1x, (z)
0 =25 (X, + 1]

It is clear that f(x) > 0, Vo € X. Just show that f is integrable on X.

n=1

e Conversely, suppose that there exists f € L'(X) and f(x) > 0, Vo € X. For every n € N set

Xn:{xEX: f(m)>n_1|_1}

Show that -
U X, =X and u(X,) < (n+1)/ fdu.
n=1 X

Problem 132

Let (X, M, p) be a measure space where the measure p is positive. Let f : X —
R, be a measurable function such that [ fdp < 0.

(a) Let N = {x € X : f(x) = o0}. Show that N € M and p(N) = 0.

(b) Given any € > 0, show that there exists & > 0 such that

/ fdu <e forany E € M with u(E) < a.
E

Hint:
(a) N = f~1({oc}) and {oc} is closed.
For every n € N, nly < f.

(b) Write

o< [ sau= [ pn
E ENNe
For every n € N set g, := f1lys,f1lye. Show that g,(x) — 0 for all z € X.

Problem 133
Let € > 0 be arbitrary. Construct an open set Q C R which is dense in R and
such that pp(Q) < e.

Hint:
Write Q = {1, z2,...}. For each n € N let

A g e
no- (l’n - 2n+2’$n + 2n+2) :
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Then the I,,’s are open and Q :=J>7, I,, D Q.

n=1-""n

Problem 134
Let (X, M, ) be a measure space. Suppose p is positive and p(X) = 1 (so
(X, M, n) is a probability space). Consider the family

T ={AeM: u(Ad)=0or u(A) =1}

Show that T s a o-algebra.

Hint:

Let (An)nen € M. Let A=, oy An-
If u(A) =0, then A€ 7.

If u(Ap,) =1 for some ng € N, then

1= j(Any) < p(A) < p(X) = 1.

Problem 135
For every n € N, consider the functions f,, and g, defined on R by

na

(] +n)”

—nlz|

fn<x> =

gn(z) =n'e

where a,F€R and B> 1
where v € R.

(a) Show that f, € LP(R) and compute || f,||, for 1 <p < oco.

(b) Show that g, € LP(R) and compute || g,||, for 1 <p < oco.

(c) Use (a) and (b) to show that, for 1 < p < q < oo, the topologies induced on
LP N LY by LP and LY are not comparable.

Hint:
(a)

e For 1 < p < oo we have
1 1 1
[ fallp =27 (Bp — 1) »nF5.
e For p = oo we have

[ falloo = N || full, = n®~7.
p—00

(b)

e For p = oo we have
[gnlloo =7
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e For 1 <p < oo we have

lgnlly = 2707 5p7 5.

(c) If the topologies induced on LP N L4 by LP and LY are comparable, then, for ¢, € LP N L4, we
must have

() Tim [lpally, =0 = Tim gu]l, =0.

Find an example which shows that the above assumption is not true. For example:

_ 1
Pn =N 7+qgn-

Problem 136

(a) Show that any non-empty open set in R™ has strictly positive Lebesque mea-
sure.

(b) Is the assertion in (a) true for closed sets in R™?

Hint:
(a) For any ¢ > 0, consider the open ball in R

By (0) = {& = (21, ..,2n) : 2]+ ...+ 2 <4’}

For each n € R, let I,(0) := [_%7

S

Ek). Show that

1.(0) := I,(0) X ... X 1,,(0) C Ba(0).

n

(b) No.

Problem 137

(a) Construct an open and unbounded set in R with finite and strictly positive Lebesgue mea-
sure.

(b) Construct an open, unbounded and connected set in R? with finite and strictly positive
Lebesgue measure.

(¢) Can we find an open, unbounded and connected set in R with finite and strictly positive
Lebesgue measure?

Hint:
(a) For each k =0,1,2,... let

1 1
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Then show that I = (J,-, I satisfies the question.
(b) For each k =1,2,... let

11
Bk == (Qk, 2"7) X (7]{5,]43)

Then show that B = |J;—, By satisfies the question.
(c) No. Why?

Problem 138

Given a measure space (X, A, ). A sequence (f,) of real-valued measurable
functions on a set D € A is said to be a Cauchy sequence in measure if given
any € > 0, there is an N such that for all n,m > N we have

ple s [fal) = fm(@)] 2 €} <&

(a) Show that if f, & f on D, then (f,) is a Cauchy sequence in measure on D.
(b) Show that if (f,) is a Cauchy sequence in measure, then there is a function
f to which the sequence (f,) converges in measure.

Hint:
(a) For any € > 0, there exists N > 0 such that for n,m > N we have

D = Fal 2} Sp{D: |fu = f12 S} +1{D = f12 5}

(b) By definition,

1 1 1
for 6= 2, Im €N: M{D: |fnl+p—fn1|z§}<§ for all p € N.

In general,

1 1 1
for6:2—k, dng €N, ng > ng_q: ,u{D: |fnk+p—fnk|22—k}<2—k for all p € N.

Since ng4+1 = ng + p for some p € N, so we have

1 1
,LL{D |fnk+17fnk|227}<? for k € N.

Let gy = fn,. Show that (gr) converges a.e. on D. Let D, := {x € D : limp_ gx(z) € R}

Define f by f(z) = lim_ o g () for z € D, and f(x) = 0 for 2 € D\ D.. Then show that g + f
on D. Finally show that f, % f on D.
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Problem 139

Check whether the following functions are Lebesque integrable :
(a) u(z) =1, ze[l,00).

(b) v(z) = \/LE’ x € (0,1].

Hint:
(a) u(z) is NOT Lebesgue integrable on [1, c0).

n—oo

1 1
/ w(z)dpp(z) = lim - 1p 0 (2)dpr(z) = lim —dx.
[1,00) '

(b) v(x) is Lebesgue integrable on (0, 1].
We can write

1
v(z) = ﬁ

Use the Monotone Convergence Theorem for the sequence ( 1 1

, x€(0,1] =

Nz 1(0,1](13) = sup Nz 1[%,1] (2).
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